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AChip
You Can
TalkTo

... and 1t will obey,
right away.

That 1s the goal.

Oh, and it ought to
be small enough to fit
in your phone.

By Rachel Nowak

DO NOT LIKE TO DRIVE A CAR. I THINK IT WOULD BE
nice to get into my car and say, ‘“Take me to
Washington, to the Kennedy Center.” And I
could just sit there and read something,” says
Andreas Andreou, PhD ’86, assistant profes-
sor in the Department of Electrical and Com-
puter Engineering (ECE).
“I hate phones. I don’t remember numbers.
Why can’t I say, ‘Dial Silvio in Cali-
fornia’» Why does a telephone have ~ So far, large-scale computing
to have a dial, or buttons?” An- is digital. But at Hopkins, one
dreou swoops a telephone from his group is exploring another
desk and hammers on the buttons. approach: analog computing.
“It already has a microphone, some- ~ Already, they are making chips
thing to listen with! that see, hear, and learn.
“And this stupid thing!” An-
dreou grabs my tape recorder. Why couldn’t a com-
puter directly transcribe from audiotape into typed
copy, he wants to know.
A thickset, robustly healthy Greek Cypriot, Andreou
is exasperated by what he sees as the major flaw in
traditional computer technology: its inability to “dif-
fuse through society and help people.” According to
Andreou, computers grow ever more powerful, but
remain instruments of the specialist—the number-
crunching scientist or the symbol-shuffling word proc-
essor operator. “I would like to see that change,” he
says, hands moving, words tumbling with excitement.
“I would like to see people having access to things that
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will make their lives easier.”

For computers to become useful
tools for the masses, they must be
redesigned, so they communicate not
via the keyboard, but directly with
their operators and their surround-
ings. They must obey the spoken
word, recognize faces and objects,
even read handwriting, Andreou rea-
sons. To do that, they need to be given
sight and hearing, possibly also touch
and smell.

Robert Jenkins, group supervisor
of the computer science and technol-
ogy group at the Johns Hopkins Ap-
plied Physics Laboratory (APL), shares
Andreou’s dreams. In the fall of 1985,
they met: Jenkins a visiting professor
on loan from APL to the ECE depart-
ment, and Andreou a graduate stu-
dent in that department.

“There was an instant symbiosis, a
meeting of minds,” says the slow-
spoken Jenkins. With Moise Goldstein,
Edward J. Schaefer Professor of Elec-
trical Engineering and an authority
on auditory processing, Andreou and
Jenkins embarked on an exploration
of analog computing for solving prob-
lems in sensory perception.

Now they orchestrate the projects
of a team of graduate students from
the ECE department, who beaver
away in a laboratory on the second
floor in Barton Hall. The students are
striving to produce perceptive com-
puters— perceptive meaning they can
translate streams of data, like sound
or light, directly into meaningful in-
formation.
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HE FIRST STAGE IN

the team’s quest for com-
puter perception is to
develop a machine that
will respond to verbal
commands uttered in
the typical noisy environment in which
we live and work. The machine would
ignore footsteps and the conversation
by the coffee pot, but respond to “Dial
Dr. Aleksandra Pavasovic, in
Belgrade,” or “Make a transcript of
our conference call.” And to be of
practical use the speech recognizer
machine must operate in real time—
that is, must process sound waves
immediately, at the same time they are
received —as well as be small and en-
ergy-efficient.

Most computers in use today are
digital and serial. To get an answer,
they take a digital input, a string of
zeros and ones represented by two
different voltages, and then use a
mathematical recipe called an algo-
rithm to plod through an orderly se-
quence of logical manipulations. The
problem is that speech, to a computer,
is not digital and serial; it is a jumbled
mixture of electrical signals coming
from a microphone. The signals are
analog. That is, the voltage goes up
and down, varying through all de-
grees between on and off. Thus,
conventional speech recognizers must
first convert this analog signal into a
digital string of ones and zeros. That
takes time.

Apostie for analog:
Andreas Andreou
holds an analog
chip that “hears”
and sorts one
voice from
another, instan-
taneously.
Someday,

maybe, its distant
descendant will be
in your phone.
Andreou says
digital computing
is too bulky, too
slow, for many
devices of the
future.

BILL McALLEN

Next, the computer goes to its cen-
tral memory, to compare the string
with sequences representing certain
words or word parts. If the word has
several different meanings, like “ball,”
the computer has to grind through yet
another sequence of logical steps,
examining associations with other
words in the sentence—“park” and
“bat” or “music” and “gown” —to deter-
mine which definition fits all the asso-
ciations. As the sentence gets longer,
the number of combinations increases
exponentially, a phenomenon known
as “combinatorial explosion.” The com-
puter, having to scan more and more
data, takes longer and longer to search
for the answer; it may become com-
pletely disabled. Or as Jenkins puts it,
“It if’s and then’s itself to death.”

The process is clumsy, time-con-
suming, requires megabytes of mem-
ory, and makes conventional speech
recognizers notoriously inaccurate un-
less the number of possible words is
severely restricted, say to a few hun-
dred. Programs that can analyze unre-
stricted speech are in the research
pipeline, but so far they are incredibly
slow, taking many hours to process a
single segment of speech, says An-
dreou. The conventional approach to
this problem is to build “super” com-
puters—ever faster, but still digital.

Andreou and Jenkins stand among
the minority in the field who believe
that the conventional “brute force”
approach will never produce practical
machine perception. Practical applica-



tions require that all processing be
carried out in real time, they point
out. (That is, simultaneously.) And
they believe that digital computers—
no matter how fast—are inherently
handicapped by their need to conduct
computations in lock-step order. An-
dreou says, “We know [machine per-
ception] is not doable with present-
day computers. We know it won’t be
doable with the next generation of
supercomputers. So we have to look
at different ways of doing things. Radi-
cally different ways.”

They turned to nature for their
inspiration. For while conventional
computers may outshine humans at
tasks such as logic and math, humans
do far better on skills needed in per-
ception—making generalizations, for
instance, or finding associations be-
tween things previously unrelated.

That's because humans, like all ani-
mals, possess sophisticated machinery
for monitoring the environment: bio-
logical processors that operate in real
time, sorting through reams of fuzzy,
noisy, environmental data. That’s how
we make sense of the thousands of
sights, sounds, smells, and textures
with which we are bombarded. Na-
ture’s system is effective, robust, and
energy-efficient—a perfect model to
follow, say Andreou and Jenkins.

Consider:

The nervous system does not re-
sort to converting analog signals
into ones and zeros. Real world
data—sound waves, light waves, and
so on—are broadcast in continually
varying analog form. The ear and the
eye pick up these signals and convert
them to analog electrical signals, which
are then processed again. The ear and
eye sift out the important information
and transmit it to the brain in the form
of nerve cell firing rates.

The nervous system does not re-
quire complete sets of accurate
data in order to process informa-
tion correctly. Instead, it uses in-
telligent guesses based on generaliza-
tions, context, and best fits. In this way
it avoids the problem of combinatorial
explosion. For the brain, the longer
the sentence and the greater the num-
ber of associations, the more quickly
it knows the correct meaning of the
word “ball.”

The brain, unlike the digital com-
puter, stores information primar-
ily in analog form. Information is
stored when complex electrochemical
signals change the strength of syn-
apses between the neurons; that is, the
signals actually and physically change
the way these specific neurons will
transmit signals in the future. In this
way, the brain does not require pro-
gramming, but simply learns by expe-
rience as it responds to the environ-
ment.

The physical layout of the brain
ensures that it is robust and long-
lasting. Brain cells, or neurons, are not
serial, linked in a chain, but are
interconnected in a dense web. And
rather than each neuron having one
specific task, many neurons fire in
concert, working together on each job.
This cooperation is called distributive,
or parallel, processing, and it makes
for extremely fast computation. It also
means that signals continue to be trans-
mitted and processed even if some
neurons cease to function—and a
good thing, too, because from a start-
ing total of 200 billion neurons in the
human brain, around 50,000 die each
day.

Finally, the brain is extraordinar-
ily compact and energy-efficient.
The relatively simple data processing
done by the tiny eyes of the fly would
require a computer as big as three
refrigerators running on kilowatts of
power, if conventional digital compu-
tation was used.

The objective of the Hopkins engi-
neering team is to transfer some of
these desirable traits of the nervous
system into silicon. To do this, they
are designing microchips embedded
with analog circuits. As in the brain,
analog circuitry allows for speed, small
size, and low energy consumption.

The team hopes eventually to as-
semble the microchips into a mini-
ature, real-time, low-power electronic
silicon speech recognizer that will con-
vert spoken words (“speech signals,”
to Andreou) into the electronic signals
that operate a computer. To do that,
they must find ways for computers to
perform each step of the perception
process: hearing a command; separat-
ing the commanding voice from other
noises; augmenting sound with vision;
and finally, transforming words into
commands into actions, by use of asso-
ciative memory.

Designing an electronic ear

GRADUATE STUDENT
Weimin Liu sits
amid a mass of elec-
tronic apparatus: a
screen with three
neon green shapes
writhing upon it.
Boxes with switches
and dials. Two fin-
gernail-sized microchips, each cen-
tered on a circuit board cluttered with
colorful electronic devices like those
that spill out the back of old radios.
And a tape recorder blasting out pop
singer Sinead O’Connor’s “It’s been
seven hours and 15 days....”

Liu is making an electronic ear.
Sound waves entering our ear hit
the ear drum, he explains. Then they
vibrate along three small bones in the

middle ear, through the “oval win-
dow,” and into the inner ear, a fluid-
filled chamber called the cochlea. Vi-
brations in the cochlear fluid move a
membrane, called the basilar mem-
brane, that is stretched across the in-
side of the cochlea. The movement
bends tiny stereocilia on the hair cells
that extend from the membrane to
nerve fibers of the auditory nerve,
generating signals for relay to the
brain. It almost seems mechanical, says
Liu. “You bend the stereocilia and
that generates the signal.”

Different clumps of fibers respond
to different frequencies, so that differ-
ent sounds trigger different nerve fi-
bers to produce characteristic electri-
cal firing patterns. In this way the
cochlea sorts—or preprocesses—
sounds at the same time it transmits
them to the brain.

“What is so striking” about the ear,
says Liu, “is that each group of fibers
is locked to a certain frequency.” One
major group of fibers responds to the
fundamental frequency (or tone),
while other distinct groups are sensi-
tive mostly to harmonics. The sepa-
rated signals convey information vital
for speech recognition. For instance,
vowels can be identified by their har-
monics.

Liu’s electronic ear, or speech pre-
processor, is intended to imitate this
natural system. It responds to sound
by reproducing the characteristic
firing pattern of the auditory nerve
fibers.

Liu is from China, where he worked
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If graduate stu-
dent Weimin Liu
succeeds, the
result might be a
new-generation
cochlear implant,
one that would
“hear” and pass
signals to the
auditory nerve of a
deaf person. Here,
Robert Jenkins
from APL provides
technical advice.

at the Chinese Academy of Sciences
in Beijing. He came to the U.S. three
years ago to work with Goldstein in
modeling auditory processing, and has
been working on the electronic ear for
about two years. “It may take another
two years,” he estimates.

On one circuit board sits the basilar
membrane chip, a microscopic bank
of 30 filters etched into its silicon.
Each filter corresponds to a different
position along the basilar membrane.
(A filter is an electronic device that
damps out all but a particular fre-
quency range.)

Each of the 30 filters can connect
to an electronic hair cell on the hair
cell chip, sitting on the other circuit
board. The hair cell chip takes a wide-
range signal and compresses it into a
narrow range, simulating the interac-
tion of biological hair cells and audi-
tory nerve fibers.

In earlier tests, he passed “da,” “ma”
and “ba” sounds, synthesized for con-
sistency, through the system. (Newly
designed chips, like infants, find these
simple syllables “sort of easy” to start
with, he says.) In those tests, the signal
“locked” into the required frequency,
producing a shape similar to the sov-
ereign standard: the firing pattern
recorded from auditory nerve fibers
of an anesthetized cat “listening” to
the same sounds. These preliminary

” ¢
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tests were deemed successful.

Today, listening to the music of
Sinead O'Connor, Liu is not working.
He is playing, to see what his system
will do with such complex sounds. He
turns on the music, and three green
signals dance on the oscilloscope
screen. The top signal, leaping and
spiking like storm interference on a
television, represents the input signal:
“Music or speech is a very rich signal,”
Liu comments.

The filter siphons off its own par-
ticular frequency, creating the middle
signal, a jaggedy wave, which repre-
sents the basilar membrane’s output.
The signal passes on to the single hair
cell on the second chip, and the bot-
tom signal, a smooth, calm wave, repre-
sents the final output. Liu smiles.

Eventually, he promises, all 30 fil-
ters and all 30 hair cell circuits—or
more—will be contained on one chip.
But “I want to be sure it works be-
fore...” He pauses. “The Big Chip.”

“The Big Chip” would be tiny. It
would consume little energy (thus need-
ing only a minuscule battery), and it
would work in real time to generate a
signal close to that of an actual coch-
lea. If Liu succeeds, the result might
be a new-generation cochlear implant,
one that could be connected to the
auditory nerve of a deaf person.

The team’s ultimate aim, however,
is to create hardware that can change
sounds, instantaneously, into some-

BILL McALLEN

thing a computer can understand and
act upon: “Call Silvio in Los Angeles,”
for instance. In engineering terms,
the goal is to preprocess a speech
signal into an electronic signal that
can go into a system that can recog-
nize and even translate speech.

Separating one voice
from the din

BOMBARDED WITH
sounds—the hum
of air-conditioners,
ringing telephones,
droning traffic, ca-
_ cophonous conver-
sations—a person simply picks out
what is relevant to the moment and
ignores the rest. But for a computer,
sounds coming from more than one
source, translated into electrical sig-
nals by a microphone, summate like
waves traveling through water: they
blend. No known method of analysis
can separate out—in real time—two
unknown signals that have become
meshed, says graduate student Marc
Cohen.

Behold a microchip,a 2mm X 2mm
sliver, thin as a hair. Under the micro-
scope it looks like an aerial view of a
glass city silvered by early morning
sunlight. Delicate, but strong-looking
wires fan out from the edge of the
chip, bridging the gap between micro-
cosm and macrocosm.

This is the microchip that can solve
the problem—or so Cohen hopes.
This chip, a very early prototype, is
made to his design. After working at
M.L.T. for five years, he came to
Hopkins two years ago to do graduate
work in the Department of Biomedi-
cal Engineering. There he worked on
a project recording electrical signals
from monkey brains, but realized that
to make sense of his reams of data, he
would need a way to separate, in real
time, the electrical signals from indi-
vidual brain cells. After falling into
conversation with Andreou, he joined
the Sensory Communication group a
few weeks later.

On this particular day, because
Cohen is visiting his family in Johan-
nesburg, South Africa, Andreou acts
as guide, playing a prerecorded tape
of Cohen’s chip in action. On the tape,
a voice drowned by a hubbub of music
is fed into the chip. It emerges trans-
formed into one clear voice with a
party going on in the background —



like a movie camera zooming in on the
main character. Another prerecorded
tape: Two voices, babbling one over
the other, are separated out into An-
dreou speaking Greek and Andreou
speaking English. The speech separa-
tor can be adapted to separate out any
number of voices, says Andreou.

“The chip looks at the signals com-
ing in: each little sequence, in each
little interval of time. It finds the dif-
ferences and the similarities between
them. It carves out little pieces from
the pattern in time until both chan-
nels have nothing in common,” ex-
plains Andreou.

The circuit layout used in the voice
separator is a type of neural network.
(Some engineers prefer the terms “par-
allel distributive processing” or “neu-
rodynamic computing.”) “Neural net-
work” is a catch-all phrase generally
used to describe computer systems
that, in a crude caricature of the brain,
consist of interconnected webs of sim-
ple electronic processing units called
“neurons.” Cohen’s voice separator
chip, effective though it is, consists of
only two neurons and two synapses.
(“Just think what it can do when it’s
got more than two!” says Andreou.)

A neural net is just an architecture,
and it can be implemented in a variety

Under the
microscope, a
microchip looks
like an aerial view
of a glass city
silvered by early
morning sunlight.
Wires bridge the
gap between
microcosm and
macrocosm.

of ways, Cohen explains later. For
instance, you can simulate a neural
net on a traditional sequential digital
computer, if you want to. But Cohen
sees no point in it, for this project.
“The whole idea of doing something
on a neural net is that you can per-
form parallel processing, and that
can’t be simulated.” So he has actually
built his neural net into the hardware,
in analog form.

Neural networks may or may not
work “like” the brain, but are similar
in that they need no programming
and no central memory. Instead, they
“learn” by being exposed to data, and
information is stored within the net.

How a network learns: In one proc-[F

ess, called supervised learning, the

network is exposed to an input signal k&

on one side, and the desired output
signal on the other side. Since the
neurons are interconnected, the two
signals resonate back and forth. As
they resonate, the currents and volt-
ages shift on all neurons throughout
the net. Special learning algorithms
change “weights” (charges on capaci-
tors) to alter the flow of current, or the
voltage, between neurons, favoring
the passage of input signal to the
desired output.

The voice separator uses a more

sophisticated method, called unsuper-
vised learning, in which changes in
the input signals themselves modify
the weights. In this way the system
adapts continuously to changing con-
ditions.

In both processes, the input signal
can be envisaged as eroding channels
of least resistance through the net-
work. Those channels become its
memory.

Mathematically, Cohen’s chip re-

MIKE MANDELLA

mains difficult to describe, if not im-
possible. But that worries neither Co-
hen nor his professors. “Just build
things, test them, and figure out ex-
actly how they work later,” Andreou
advises.

At present, the voice separator is far
from perfect. For instance, it cannot
yet deal with time delays caused when
speakers stand at different distances
from the microphone. Cohen is work-
ing on that.

Developing a silicon retina

BUT IMAGINE
| Cohen’s chipin a
~ factory, or an air-
plane cockpit, or
even a living room
§T with the television
on. In noisy places like that, many
sound signals are blocked out, so that
speech recognition based on sound
alone becomes extremely difficult.
“We needed to figure out a way to
improve speech recognition in noise.
And when you look at the way hu-
mans do it, you realize we use a lot of
additional sources of information, like
hand gestures. Or we just watch the
speaker’s lips,” explains Andreou. But
to read those clues, these new comput-
ers need vision.

The eye, like the ear, does not
merely record the incoming signal. It
preprocesses it, in real time, automati-
cally doing things like adjusting to
different light intensities, locating the
edge of objects, or detecting motion—
all that, before passing the sorted in-
formation on to the brain.

Conventional machine vision as-
pires to no such heights. It simply
records an image with a camera and
converts the intensity of light at each
point into a digital signal for process-
ing in a digital computer. Using this
method, a computer needs the entire
night to deduce that it is looking at
two squares moving in opposite direc-
tions.

As a step toward real time proc-
essing, Kwabena (Buster) Boahen,
then a Hopkins undergraduate from
Ghana, fabricated a “silicon retina.”
This device, though lacking the com-
plex skills of a genuine eye, has mas-
tered the heart of the matter: It can
convert analog changes in light inten-
sity into analog voltage changes. In
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that way it can detect edges, as well as
automatically adjusting to different
light intensities. “It even falls for opti-
cal illusions,” says Andreou. (In fact,
that’s how they test these chips.)

Boahen’s silicon retina is a neural
net on a microchip inspired by one
designed in 1987 by the guru in the
field, Carver Mead, who is the Gordon
and Betty Moore Professor of Com-
puter Science at the other center of
this work, the California Institute of
Technology. (Gordon Moore is the
chairman and founder of Intel Corpo-
ration, and one of the “Founding Fa-
thers” of Silicon Valley.) After getting
his master’s degree, Boahen left
Hopkins this fall to pursue a PhD in
Mead’s research group in California.

The silicon retina has three layers
of electronic neurons. The top layer
is “photoreceptors,” made from a spe-
cial sort of electrical junction which
produces electrical current in direct
proportion to the intensity of the light.

As with biological retinas, every
point on the processor gets a different
amount of light from each part of the
image, and each signal is processed
concurrently and in real time. The
output, representing the logarithm of
the brightness, is in voltages. These
pass on to the rest of the net for
further processing.

In related work, the Hopkins en-
gineering team has produced several
different retinal chip models. One will
be used in the telescope at the Sacra-
mento Peak land-based Solar Observa-
tory to compensate for movement in
the objects being observed. That chip,
just one centimeter square, will re-
place a refrigerator-sized rack of com-
puters.

Associative memory:
the final link

PHILIPPE POULIQUEN,

an exuberant first-year
graduate student, is the
youngest member of
the team but by no
means the newest. He’s
been working with Andreou and
Boahen since he was a sophomore,
developing the last link needed for the
speech recognizer—the machine that
will transform vowels and consonants
into words, words into commands, and
commands into actions. The linking
device is called an associative memory,
and in its present form, it consists of
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Making the
Silicon Retina

How the chip is designed,
and how it imitates nature’s
“circuitry”

By Andreas Andreou

HROUGH PROGRAMS

established by the fed-

eral government, univer-

sity students and re-

searchers have access to

state-of-the-art Metal
Oxide Semiconductor (MOS) silicon
technology. MOS is the most common
technology used to implement the mi-
croprocessor of a personal computer
or other Very Large Scale Integrated
(VLSI) systems.

At Hopkins, undergraduate and
graduate students can design and fab-
ricate their own analog or digital VLSI
circuits through courses offered in the

Figure A

Electrical and Computer Engineering
department. At workstations, they de-
sign the integrated circuit for silicon
chips. Then they mail them electroni-
cally to a silicon broker, MOSIS. At
the broker’s, designs from many
sources are gathered on a single large
silicon wafer. In that way the fabrica-
tion cost of the chips (about $400 for
a tiny chip) can be shared.

Analog VLSI systems, using designs
like those discussed in this article, em-
ploy the same basic devices as digital
VLSI circuits. However, in analog de-
signs, the transistors are not just used
as switches. Furthermore, they oper-
ate at current levels a thousand times
smaller. At these low current levels,
the circuits are inherently slower and
less accurate. However, these are the
same constraints faced by biological
information processing systems, which
have evolved effective systems of co-
operative behavior among many sim-
ple processing elements.

Mapping neural circuits onto silicon:
The input layer of a biological retina
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uses a surprisingly simple structure to
handle many functions (signal
transduction, logarithmic compres-
sion, intensity normalization, and con-
trast enhancement), all at the same
time and all in real time. This input
layer is called outer-plexiform, and it
consists of just three types of cells, two
of which—the photoreceptors and the
horizontal cells—are shown in the sim-
plified Figure A. (The third cell type,
called a bipolar cell, carries signals
from the photoreceptors to the out-
put layer of the retina.) Specialized
structures, called synapses, mediate
chemical and electrical interactions be-
tween the cells. The filled circles (here
colored blue) are inhibitory chemical
synapses, while the open ones (red)
are excitatory chemical synapses. The
gate-like symbols represent electrical
synapses, which are called gap junc-
tions; they pass electrical current be-
tween the cells. In this particular ex-
ample, which does not correspond to
the retina of any particular species,
we have included all known interac-
tions between the cells.

In an actual retina, cells form a
densely packed two-dimensional array
that lies in the back of the eye. Light
enters the eye and activates photore-
ceptors. The photoreceptors trans-
form light energy into current, which
excites the receptors and diffuses
through the gap junctions, activating
neighboring receptors as well. In addi-
tion, the receptors excite the horizon-
tal cells. They, in turn, inhibit the
receptors. The key point is that excita-

tion and inhibition take place all at the
same time. Activity also spreads within
the horizontal cells through gap junc-
tions.

We often think of cells as firing on
and off. However, the outer-plexiform
processes information in truly analog
fashion, using signals that change con-
tinuously, both over time and in volt-
age level.

What we have done in our labora-
tory is to map outer-plexiform retina
processing onto silicon, as shown in
Figure B. Colors show correspon-
dences to the biological neural circuit.
The silicon and biological circuits have
roughly the same areas, operate at
about the same power level, and have
similar functionalities.

What does the silicon retina do? It
gives results like the “Mexican hat”
response curve in Figure C, in which
signs above the line represent excita-
tion, while signs below represent inhi-
bition. Note how excitation of a single
receptor creates a neighborhood of
activation (in the middle), surrounded
by inhibition. This is the well-known
“center/surround organization,” also
found in biological retinas and in other
parts of the brain.

The technical information: For
chemical synapses, we use non-linear
transconductances (MOS transistors in
subthreshold, M1 and M2), while gap
junctions are realized using active lin-
ear and non-linear conductances, GR
and GH. The conductance of the sili-
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Because the chip
is analog, it has
many states
besides simple ON
(above the line)
and OFF. Its
“Mexican hat”
response curve
also occurs in
biological retinas
and in many parts
of the brain.

con gap junctions is variable; it can be
changed manually or can be adapted
by the incident light intensity. Nodes
(equipotential regions) in the top layer
correspond to photoreceptors P, while
those in the lower layer represent the
horizontal cells H. A parasitic lateral
bipolar transistor Mp is used to
transduce light into current. It sources
current to the receptor nodes while
M2 sinks current from these nodes;
these opposing effects correspond to
excitation and inhibition. M1 sources
current (excites) the horizontal cell
nodes. The bias current Ix sets the
transconductance of M1 while the pho-
toreceptor current determines M2’s
transconductance. For subthreshold op-
eration, the voltages encode photocur-
rents logarithmically, allowing a large
dynamic range. The basic circuit (in-
cluded in dotted lines) can be repli-
cated to form a two-dimensional ana-
log processing surface.

On the “Mexican hat” diagram, the
data correspond to a 25-node one-
dimensional silicon circuit. The pho-
toreceptors supply currents of 25nA
to all nodes except node 13, which
receives 100nA. The two sets of data
correspond to two different values of
GR. As GR decreases, the activation
neighborhood gets smaller. When GR
is reduced to zero (absence of gap
junctions between photoreceptors),
the circuit exhibits a local Winner-
Takes-All behavior.

For further information: D.H. Hubel,
Eye, Brain, Vision, Scientific American
Library, Book #22, 1988, and C.A.
Mead, Analog VLSI and Neural Systems,
Addison-Wesley, 1989. Also A.G. An-
dreou et al., “Current-Mode Subthresh-
old MOS circuits for VLSI Neural
Systems,” IEEE Transactions on Neu-
ral Networks, 1991.
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a neural network on a single chip.

Associative memory associates two
things in much the way that the sight
of an object, say a cup sitting on a
table, triggers the name of the object,
“cup,” in the human brain. Similarly,
the word “cup” can be associated with
the word “saucer,” or the command
“wash,” or the warning “fragile.”

Pouliquen’s associative memory
chip consists of 46 neurons arranged
in three layers—two outside layers that
handle input and output, and a cen-
tral hidden layer. During supervised
training the operator presents the chip
with the two pattérns to be associated,
in this case represented by voltages,
and the learning algorithms adjust the
weights accordingly.

When Pouliquen presents his associa-
tive memory chip with one of seven
different 16-digit numbers, it immedi-
ately spits back another of the seven
numbers. Such are the humble begin-
nings of an engineering project. But
following the next refinement, says
Pouliquen, you will be able to type in
“cup” and the chip will give back
“saucer,” “Spode,” and so on.

In time, associative memories may
well spawn spin-offs such as rapid-fire
computer dictionaries. “A dictionary
on a chip!” says Andreou, ebullient.
Being analog, these chips would find
definitions by simultaneously compar-
ing all words with the original, instead
of plodding through an alphabetized
computer dictionary.

Dictionaries are only the beginning
because, importantly, the words will
not need to be in alphabetical order.
Concordances and other data bases
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would become far more speedy to use.
“The Complete Works of Shakespeare is
not sorted,” says Pouliquen, “but with
associative memory you could present
a word, and it would give you back all
occurrences of that word.”

The final aim, however, is to pro-
duce a giant associative memory with
many neurons, then connect it to an
artificial retina and an artificial ear. If
the retina, for instance, scanned a
cup, at the same time that someone
said “Wash it,” the memory would
trigger a computer command to start
the wash cycle. Associative memories
are based on the neural network para-
digm, and as such do not require a
complete and total match. A cup that
is blue, or chipped, or painted with
roses—all could still trigger the wash
cycle, as would a groggy, half-awake
voice.

OW LONG WILL IT BE
before the team of en-
gineers attains its goal
of a perceptive com-
puter, obedient to our
slightest utterance? “At
least 10 years,” says Andreou. Before
the team has anything resembling a
truly perceptive computer, its mem-
bers must refine the prototype voice
separator, cochlea, retina, and associa-
tive memory. They must also come
up with a method of interconnecting
the parts—not just one to the next,
but one fanning out to several others.
And they need to improve ways of
storing analog information. None of
these obstacles is trivial.

In addition, problems will inevitably
arise that cannot be foreseen. “But
those are not going to be related to
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Marc Cohen (left)
has a chip that can
pick out one voice
from a din. Philippe
Pouliquen’s chip
will link the others:
it's an associative
memory.

technology,” says Andreou. He thinks
the major obstacles lie in the fact that
scientists have only a general under-
standing of how the brain works. “We
only know.” he says, “what happens at
the very early stages of the sensory
pathways, such as the cochlea, or the
retina... Besides, who said we were
trying to build a brain?”

What they're trying to build is ana-
log microchips that can perform spe-
cific tasks in, for example, computer
vision. Andreou expects to do it. “We
already have,” he crows. “These are
just babies, but they work.”

With future generations of such
chips, the engineers predict, the com-
puter revolution will really begin. “I
see the whole gamut,” says Jenkins.
“Unmanned vehicles for investigating
the inside of a nuclear reactor, or a
sewer pipe, or a gas line. The artificial
cochlea could be the beginning of a
new kind of hearing aid. Or someday
the silicon retina, if there was a way
to tie it into the optic nerve, could help
the blind.”

Pouliquen joins in: “Little creatures
that walk around. Pure analog compu-
tation. These things will be trained to
associate lack of energy with power
outlets, with some sort of need. When
they start running down, they’d see a
power outlet and head toward it.”

Andreou picks up on the wish list:
“Voice controlled telephones. Cars
that find their own way. Machines that
transcribe audiotapes.... Things we
can’t even imagine because we are
constrained to think in certain ways
by how computers are helping us now.
When this new technology becomes
available, our imaginations will just
go crazy.”

Thas work is being funded by a Research
Initiation Award from the National Sci-
ence Foundation and by grants from the
Applied Physics Laboratory’s IRIAD pro-
gram. All student projects were fabricated
through Educational Grants from the Na-
tional Science Foundation.

Rachel Nowak writes for BioWorld in
Washington, D.C.



