
The Conical-Fishbone Clock Tree:
A Clock-Distribution Network for a

Heterogeneous Chip Multiprocessor AI Chiplet

Tomas Figliolia† and Andreas G. Andreou∗
∗Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218

†Xilinx Corporation
Email: tomas.figliolia@gmail.com, andreou@jhu.edu

Abstract—The 2.5D nano-Abacus SOC is a neuro-
morphic CMP architecture for accelerated computing,
hardware AI inference and machine intelligence. The SOC
consists of a silicon interposer a 3D memory stack, a host
FPGA and three (17.47 mm X 14.13 mm) computational
chiplets fabricated in the Global Foundries 55nm CMOS
technology. The latter employ two networks on chip, a to-
ken ring L1-NOC, and a switched circuit L2-NOC as well
as a DDR DRAM PHY interface and a general purpose I/O
port. In this paper we present a novel clock tree network,
named Conical-Fishbone clock tree, that is employed in
the low latency energy aware clock distribution networks
of the chiplets. The many nets in a Fishbone clock tree
consist of conical sections in an inverted cone architecture,
with each resulting ring considered to be one clock tree.
When a ring is excited at uniform intervals from the ring
below, the symmetry in the circular characteristics of the
wire makes the effect of reflections be exactly the same
along any place in the wire.The designed clock tree allows
low clock skew, consumes low power while offering the
modularity to support a hierarchical design using standard
CAD flows.

I. INTRODUCTION

The 2.5D nano-Abacus SOC is a computer sys-
tem architecture for a variety of processing algorithms
in what we consider today as Third Wave AI and
Machine Intelligence ranging from deep neural net-
works to linear and non-linear morphological process-
ing, probabilistic inference using exact and approximate
Bayesian methods. High performance energy aware
processing is achieved through approximate computing
and fixed point arithmetic in a variable precision (6 bits
to 18 bits) architecture. The processing pipeline is im-
plemented entirely using event based neuromorphic and
stochastic computational primitives. A core “chiplet” is
critical in the design of the nano-Abacus 2.5D SOC ar-
chitecture (Figure 1) which comprises of a 36 mm x 50
mm Si interposer (5 metal layers, four stitched reticles)
and “chiplets”. The fabricated interposer is shown in
in Figure 2 . Two of the chiplets are COTS compo-
nents: (i) a Xilinx Zynq-7100 die for operating system
support and high speed I/O and (ii) a high bandwidth
memory stack (Tezzaron GEN4 3D DiRAM). Three

additional heterogeneous chip multiprocessor “chiplets”
designed in 55nm GF CMOS, implement mixed-signal
programmable and reconfigurable processors for energy
efficient, streaming processing such as for example wide
motion area imagery [1]. The nanoABACUS 2.5D SOC
is not an ASIC but rather a processor architecture that
can be hardware or software re-configured with three
of four “chiplet” processor designs, all with common
physical standard footprint and logical interfaces. The
floorplan of the chiplet-core and it physical interface
are shown in Figure 3 and Figure 4 respectively. The
nano-Abacus chiplet-core consists of a high bandwidth
memory interface (DRAM Interface) , a Level-1 token
ring network on chip (L1-NOC), a Level-2 switched
circuit mesh network on chip (L2-NOC), and a general
purpose input/output port (GPIO).

CMP2

CMP1 CMP3

Interposer CHIP

FPGA

3D DiRAM

Fig. 1: The 2.5D nano-Abacus SOC depicting three
mixed signal heterogeneous CMPs, an FPGA and a 3D-
DiRAM stack.

For the communication in between nodes a buffer-
less mesh network was designed. This network is called
the L2 network (L2 stands for level two). A standard
interface (AMBA like) from the L2 network node to
each processing unit is designed, one that does not rely
on any particular clock (asynchronous interface), and
hence the top level designs for the 128 PUs CMPs can
be completely abstracted from the content of each of
the PUs. Each of the PUs will have its own clock tree
completely independent from any other clock in the
system. This is the reason why a four phase handshaking
interface was designed for the communication of each
PU with the L2 network. This allows to place “dummy”

���

�������OE�&VSPNJDSP�$POGFSFODF�PO�%JHJUBM�4ZTUFN�%FTJHO�	%4%

%0*���������%4%�����������

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 08,2021 at 02:09:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The nano-Abacus interposer

Fig. 3: The nano-Abacus chiplet core architecture

PUs for both main designs, and replace them later with
the final desired PUs allowing the top level design to
close timing independent of the PU processing engines.
The L2 network can be seen in Figure 6. The connection
to the FPGA is done through a special node on the
Mesh network. The communication between the FPGA
and its network node uses the same protocol any of the
PUs uses with its own node, with the difference that
serializers and deserializers needed to be used for the
FPGA due to the extremely wide network bus, which
is over 300 bits. Additionally, so that throughput to and
from the FPGA could be increased, bidirectional pads
were used for the communication in between the L2
network and the FPGA; this interface we call the GPIO
interface.

Access to DDR memory is granted to each of the PU
by incorporating an additional network. This network
is called L1 network, and it allows communication
between each of the PUs with the DDR memory through
the DDR DRAM PHY block. This block translates read
and write requests from the PUs to the 3D-DiRAM
memory. This network is formed by independent token-
ring networks on each of the rows in both designs.
Each of these token-ring networks has a dedicated DDR
DRAM PHY port. A total of eight different token-ring

Fig. 4: The nano-Abacus chiplet-core padframe. Each
chiplet connects to the interposer through 8024 pads
(C4) on the bottom of the chip. Additional wire bonding
pads on the periphery of the chiplets allow for probing
and using each chiplet without 2.5D integration.

networks are incorporated on this L1 network, and each
PU communicates with its L1 network again through a
four phase handshake interface. The L1 network can be
seen in Figure 3.

When communicating outside of the chips, it can
either be done through the DDR memory or through the
L2 network connecting to the on-interposer FPGA and
the GPIO interface (see Figure 1). The L2 network has
an additional node, in addition to the 128 previously
mentioned nodes. This node has access only to the
L2 network, and the processing unit assigned to this
node is the external FPGA to which the L2 network
connects through the left side pads of the chip. The
onboard FPGA is able to send and receive packets to and
from the L2 network using the four phase handshaking
protocol, and also has its own address, making the
communication between FPGA and PUs completely
transparent. The utilization of this asynchronous pro-
tocol in communicating the FPGA with the L2 network
is very convenient as it does not require the equalization
of any of the data bits lines with respect to a received
clock.

Each of the CMP chips is 17466µm by 14133µm
in size. Because of these large dimensions, as indicated
earlier, it is impossible to expect the Place & Route tool
to create clock trees with very low skew and slew. It is
for this reason that a custom architecture was designed
for the clock trees which is the subject matter of this
paper. Long clock tree cells of size ≈ 1500µm by ≈
50µm were designed. These cells take a clock input and
generate several clock outputs along one or both long
sides, with a skew of only 30ps, allowing clock speeds
of up to 1.25GHz to be propagated through these cells.

���

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 08,2021 at 02:09:22 UTC from IEEE Xplore. Restrictions apply.

These cells allow clock trees to be built local to the
outputs of these clock tree cells, making these clock
trees much smaller and more reliable. In Figure 6 and
5 the different clock cells that allow both networks to
be completely in sync can be seen. Similar cells were
used for distributing asynchronous reset to the network.

3D D
iR

AM

DDR DRAM PHY

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

N
od

e
(1

,0
)

N
od

e
(2

,0
)

N
od

e
(3

,0
)

N
od

e
(4

,0
)

N
od

e
(5

,0
)

N
od

e
(6

,0
)

N
od

e
(7

,0
)

N
od

e
(8

,0
)

N
od

e
(9

,0
)

N
od

e
(1

0,
0)

N
od

e
(1

1,
0)

N
od

e
(1

2,
0)

N
od

e
(1

3,
0)

N
od

e
(1

4,
0)

N
od

e
(1

5,
0)

N
od

e
(1

6,
0)

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

N
od

e
(1

,1
)

N
od

e
(2

,1
)

N
od

e
(3

,1
)

N
od

e
(4

,1
)

N
od

e
(5

,1
)

N
od

e
(6

,1
)

N
od

e
(7

,1
)

N
od

e
(8

,1
)

N
od

e
(9

,1
)

N
od

e
(1

0,
1)

N
od

e
(1

1,
1)

N
od

e
(1

2,
1)

N
od

e
(1

3,
1)

N
od

e
(1

4,
1)

N
od

e
(1

5,
1)

N
od

e
(1

6,
1)

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

N
od

e
(1

,2
)

N
od

e
(2

,2
)

N
od

e
(3

,2
)

N
od

e
(4

,2
)

N
od

e
(5

,2
)

N
od

e
(6

,2
)

N
od

e
(7

,2
)

N
od

e
(8

,2
)

N
od

e
(9

,2
)

N
od

e
(1

0,
2)

N
od

e
(1

1,
2)

N
od

e
(1

2,
2)

N
od

e
(1

3,
2)

N
od

e
(1

4,
2)

N
od

e
(1

5,
2)

N
od

e
(1

6,
2)

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

N
od

e
(1

,3
)

N
od

e
(2

,3
)

N
od

e
(3

,3
)

N
od

e
(4

,3
)

N
od

e
(5

,3
)

N
od

e
(6

,3
)

N
od

e
(7

,3
)

N
od

e
(8

,3
)

N
od

e
(9

,3
)

N
od

e
(1

0,
3)

N
od

e
(1

1,
3)

N
od

e
(1

2,
3)

N
od

e
(1

3,
3)

N
od

e
(1

4,
3)

N
od

e
(1

5,
3)

N
od

e
(1

6,
3)

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

N
od

e
(1

,4
)

N
od

e
(2

,4
)

N
od

e
(3

,4
)

N
od

e
(4

,4
)

N
od

e
(5

,4
)

N
od

e
(6

,4
)

N
od

e
(7

,4
)

N
od

e
(8

,4
)

N
od

e
(9

,4
)

N
od

e
(1

0,
4)

N
od

e
(1

1,
4)

N
od

e
(1

2,
4)

N
od

e
(1

3,
4)

N
od

e
(1

4,
4)

N
od

e
(1

5,
4)

N
od

e
(1

6,
4)

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

N
od

e
(1

,5
)

N
od

e
(2

,5
)

N
od

e
(3

,5
)

N
od

e
(4

,5
)

N
od

e
(5

,5
)

N
od

e
(6

,5
)

N
od

e
(7

,5
)

N
od

e
(8

,5
)

N
od

e
(9

,5
)

N
od

e
(1

0,
5)

N
od

e
(1

1,
5)

N
od

e
(1

2,
5)

N
od

e
(1

3,
0)

N
od

e
(1

4,
0)

N
od

e
(1

5,
0)

N
od

e
(1

6,
0)

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

N
od

e
(1

,6
)

N
od

e
(2

,6
)

N
od

e
(3

,6
)

N
od

e
(4

,6
)

N
od

e
(5

,6
)

N
od

e
(6

,6
)

N
od

e
(7

,6
)

N
od

e
(8

,6
)

N
od

e
(9

,6
)

N
od

e
(1

0,
6)

N
od

e
(1

1,
6)

N
od

e
(1

2,
6)

N
od

e
(1

3,
0)

N
od

e
(1

4,
0)

N
od

e
(1

5,
0)

N
od

e
(1

6,
0)

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

N
od

e
(1

,7
)

N
od

e
(2

,7
)

N
od

e
(3

,7
)

N
od

e
(4

,7
)

N
od

e
(5

,7
)

N
od

e
(6

,7
)

N
od

e
(7

,7
)

N
od

e
(8

,7
)

N
od

e
(9

,7
)

N
od

e
(1

0,
7)

N
od

e
(1

1,
7)

N
od

e
(1

2,
7)

N
od

e
(1

3,
7)

N
od

e
(1

4,
7)

N
od

e
(1

5,
7)

N
od

e
(1

6,
7)

cl
oc

k
an

d
re

se
t i

np
ut

Fig. 5: L1 network for the 128 PUs chip. Eight different
token-ring networks communicate with the DDR DRAM
PHY. The communication between the DDR DRAM
PHY and the DDR is done through two DDR buses,
where each bus is composed of 66 signals, 64 data
signals and two complementary clocks. The required
pads communicating with the DDR memory are placed
on the right side of the chips.

For both networks on chip, the clock frequency is
300MHz, and this clock is distributed from a vertical
clock tree cell, to each of the clock tree cells present
for every row in the network. Along with the clock,
an asynchronous global reset signal (RESET) needs to
be distributed to the network on chip (NOC) as well.
This reset signal employs the same Conical-Fishbone
topology. With respect to the DDR DRAM PHY inter-
face, four different clocks are employed. A 1.25GHz
clock (0.8ns period) is used to send data from the chip
to the DRAM memory. This clock is also sent to the
DDR DRAM. Another clock for the DDR DRAM PHY
interface is the previously mentioned clock, divided
down to a 2.4ns period clock. These two clocks need to

PU

N
od

e
(1

,0
)

PU

N
od

e
(2

,0
)

PU

N
od

e
(3

,0
)

PU

N
od

e
(4

,0
)

PU

N
od

e
(5

,0
)

PU

N
od

e
(6

,0
)

PU

N
od

e
(7

,0
)

PU

N
od

e
(8

,0
)

PU

N
od

e
(9

,0
)

PU N
od

e
(1

0,
0)

PU

N
od

e
(1

1,
0)

PU

N
od

e
(1

2,
0)

PU

N
od

e
(1

3,
0)

PU

N
od

e
(1

4,
0)

PU

N
od

e
(1

5,
0)

PU

N
od

e
(1

6,
0)

PU

N
od

e
(1

,1
)

PU

N
od

e
(2

,1
)

PU

N
od

e
(3

,1
)

PU

N
od

e
(4

,1
)

PU

N
od

e
(5

,1
)

PU

N
od

e
(6

,1
)

PU

N
od

e
(7

,1
)

PU

N
od

e
(8

,1
)

PU

N
od

e
(9

,1
)

PU N
od

e
(1

0,
1)

PU

N
od

e
(1

1,
1)

PU

N
od

e
(1

2,
1)

PU

N
od

e
(1

3,
1)

PU

N
od

e
(1

4,
1)

PU

N
od

e
(1

5,
1)

PU

N
od

e
(1

6,
1)

PU

N
od

e
(1

,2
)

PU

N
od

e
(2

,2
)

PU

N
od

e
(3

,2
)

PU

N
od

e
(4

,2
)

PU

N
od

e
(5

,2
)

PU

N
od

e
(6

,2
)

PU

N
od

e
(7

,2
)

PU

N
od

e
(8

,2
)

PU

N
od

e
(9

,2
)

PU N
od

e
(1

0,
2)

PU

N
od

e
(1

1,
2)

PU

N
od

e
(1

2,
2)

PU

N
od

e
(1

3,
2)

PU

N
od

e
(1

4,
2)

PU

N
od

e
(1

5,
2)

PU

N
od

e
(1

6,
2)

PU

N
od

e
(1

,3
)

PU

N
od

e
(2

,3
)

PU

N
od

e
(3

,3
)

PU

N
od

e
(4

,3
)

PU

N
od

e
(5

,3
)

PU

N
od

e
(6

,3
)

PU

N
od

e
(7

,3
)

PU

N
od

e
(8

,3
)

PU

N
od

e
(9

,3
)

PU N
od

e
(1

0,
3)

PU

N
od

e
(1

1,
3)

PU

N
od

e
(1

2,
3)

PU

N
od

e
(1

3,
3)

PU

N
od

e
(1

4,
3)

PU

N
od

e
(1

5,
3)

PU

N
od

e
(1

6,
3)

PU

N
od

e
(1

,4
)

PU

N
od

e
(2

,4
)

PU

N
od

e
(3

,4
)

PU

N
od

e
(4

,4
)

PU

N
od

e
(5

,4
)

PU

N
od

e
(6

,4
)

PU

N
od

e
(7

,4
)

PU

N
od

e
(8

,4
)

PU

N
od

e
(9

,4
)

PU N
od

e
(1

0,
4)

PU

N
od

e
(1

1,
4)

PU

N
od

e
(1

2,
4)

PU

N
od

e
(1

3,
4)

PU

N
od

e
(1

4,
4)

PU

N
od

e
(1

5,
4)

PU

N
od

e
(1

6,
4)

PU

N
od

e
(1

,5
)

PU

N
od

e
(2

,5
)

PU

N
od

e
(3

,5
)

PU

N
od

e
(4

,5
)

PU

N
od

e
(5

,5
)

PU

N
od

e
(6

,5
)

PU

N
od

e
(7

,5
)

PU

N
od

e
(8

,5
)

PU

N
od

e
(9

,5
)

PU N
od

e
(1

0,
5)

PU

N
od

e
(1

1,
5)

PU

N
od

e
(1

2,
5)

PU

N
od

e
(1

3,
5)

PU

N
od

e
(1

4,
5)

PU

N
od

e
(1

5,
5)

PU

N
od

e
(1

6,
5)

PU

N
od

e
(1

,6
)

PU

N
od

e
(2

,6
)

PU

N
od

e
(3

,6
)

PU

N
od

e
(4

,6
)

PU

N
od

e
(5

,6
)

PU

N
od

e
(6

,6
)

PU

N
od

e
(7

,6
)

PU

N
od

e
(8

,6
)

PU

N
od

e
(9

,6
)

PU N
od

e
(1

0,
6)

PU

N
od

e
(1

1,
6)

PU

N
od

e
(1

2,
6)

PU

N
od

e
(1

3,
6)

PU

N
od

e
(1

4,
6)

PU

N
od

e
(1

5,
6)

PU

N
od

e
(1

6,
6)

PU

N
od

e
(1

,7
)

PU

N
od

e
(2

,7
)

PU

N
od

e
(3

,7
)

PU

N
od

e
(4

,7
)

PU

N
od

e
(5

,7
)

PU

N
od

e
(6

,7
)

PU

N
od

e
(7

,7
)

PU

N
od

e
(8

,7
)

PU

N
od

e
(9

,7
)

PU N
od

e
(1

0,
7)

PU

N
od

e
(1

1,
7)

PU

N
od

e
(1

2,
7)

PU

N
od

e
(1

3,
7)

PU

N
od

e
(1

4,
7)

PU

N
od

e
(1

5,
7)

PU

N
od

e
(1

6,
0)

N
od

e
(0

,3
)

FP
G

A
PU

clock and reset input

Fig. 6: L2 network for the 128 PUs chip. Commu-
nication to the FPGA is done through the (1, 3) node.
The communication between node (0, 3) and the FPGA
is done through bidirectional pads placed on the left of
the chip and the GPIO interface. Each of the packets
in the network consists 256 bits of data, making it
really difficult to have that same number of pads in that
communication. A serializer and deserializer are being
used to send and receive between the N2 network and
the FPGA through the GPIO port. The green blocks
distribute reset and clock signals.

be in phase, and it is for this reason that we don’t have
two clock tree cells for these two clocks, the division
is done local to the output of the clock tree cell. The
DDR DRAM memory provides the clock for the DRAM
to chiplet data transfers. This clock is also a 1.25GHz
clock and just like in the previous case, it is divided
down to a clock with a 2.4ns period. Both pair of clocks
need to be available on both sides of the clock cell,
therefore the output from one side of the clock tree cell
is routed to the middle of the cell and then split in two.

II. SYSTEM ON CHIP CLOCK ARCHITECTURES

Clock distribution networks are crucial sub-systems
in general purpose microprocessors in the x86 family
and PowerPC [2], [3] as well as application specific
processors such as the Anton supercomputer [4]. Skew

���

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 08,2021 at 02:09:22 UTC from IEEE Xplore. Restrictions apply.

and slew are the fundamental tradeoffs in the design
of System on Chip (SOC) clock distribution networks.
This is especially true for SOCs that occupy a large
silicon area where multiple clock tree levels must be
employed. High slew is desirable because the relative
error Slewerror/Period is lower, hence reducing the
impact on the maximum operating frequency of the
clock. For example, let’s assume a 1GHz clock tree
needs to be synthesized and two cases are analyzed for
the required slew, 80ps and 200ps. Robustness in the
design can be analyzed using these two slew cases. Let’s
now consider variability in the clock tree drivers reduces
the slew by 50%. The first case is not problematic, the
period instead of 1ns will become 1.04ns. The clock
speed is reduced by only ≈ 40MHz. In the second case,
where 200ps slew is chosen, using the same mismatch,
there will be a 100MHz speed reduction and the clock.
A common engineering solution to this challenge is the
implementation of H or Fishbone clock trees (see Figure
7). These clock trees are readily synthesizable using
standard CAD tool flows, and they often achieved good
skew and slew simultaneously even in large designs.

The latter structures rely on very powerful clock
tree drivers and on specific placement for the drivers
and wires connecting them. Topology is important to
the latter designs, necessitating a “flat” Place & Route,
because the positions of the clock drivers and wires are
not easily changeable due to geometrical constraints.
From Figure 7 it can be seen for the H clock tree
that as we increase the number of levels in the clock
tree, the areas that can possibly be used as blocks
in a hierarchical design become smaller and smaller,
making a flat synthesis the only viable option for most
cases (area in green). On the other hand the Fishbone
clock tree, gives more freedom if modularity is desired
in a design. However, with the Fishbone tree design
the place and route tools are often not efficient and
the dimensions of the rectangular area used for the
tree becomes too large. Hence it is more convenient to
custom design Fishbone clock trees using the standard
CAD tool flows. The Fishbone tree is a good option
for the clock distribution network in the nano-Abacus
chiplet core, but unfortunately it does not have robust
skew properties at the output drivers. In this Fishbone
clock tree, every column of drivers has its inputs shorted
all together as well as its outputs, but not every driver
output sees the same impedance in the line, making
it very difficult to achieve a very low skew. Even if
terminations were applied at the two ends of each
intermediate net to reduce the effect of reflections, the
skew problem wouldn’t be solved.

III. THE CONICAL-FISHBONE CLOCK TREE

In this section we describe the new clock tree
alternative, one that makes sure that the impedance seen
at the output of each of the active drivers is exactly
the same in the same clock tree level. The architecture
we propose is based on the shape of an inverted cone,

(a) (b)

Fig. 7: H-tree for clock distribution (left); Fishbone
clock tree (right). All the blocks in blue are all the leaf
cells for the clock tree. On green we can see the area in
the H tree that can be used as a block in a hierarchical
design. As the number of clock tree levels increases,
the green area becomes smaller, making it more difficult
achieve modular and hierarchical design.

shown in Figure 8. If several cross sections are created
in the inverted cone, and we consider each of these
resulting rings to be one of the many nets in a Fishbone
clock tree, we see that if a ring is excited evenly from
the ring below, the circular characteristics of the wire
will make the effect of reflections be exactly the same
along any place in the wire. This idea is the one that
will allow us to achieve both low skew and modular and
hierarchically synthesized design.

Fig. 8: Inverted cone shape used as inspiration for the
design of a new clock tree architecture. Every circle gets
excited by the circle below it. The clock root is the tip
of the cone.

Inspired by the inverted cone shape, Figure 9
shows the the Conical-Fishbone tree architecture.
The resemblance to both an inverted cone and to the
Fishbone clock tree is evident. Driven by the clock at
the tip of the inverted cone and subsequent levels of
the clock tree hierarchy are driven in a geometrical

���

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 08,2021 at 02:09:22 UTC from IEEE Xplore. Restrictions apply.

progression. The first ring of the tree is driven at four
equidistant places. If the diameter of RING 1 is x, then
every time a clock tree level is added, the resulting ring
increases by x. There is a linear relationship between
the span of the tree and the number of levels in the
tree. Hence the following RING 2 will be excited in
eight different equidistant places; to maintain symmetry
and equivalent load on each point where a ring is
excited, two additional drivers are added, the ones in
blue. These drivers have their output floating, they are
just used to equalize the load along every ring. As
the number of clock tree levels increases, the number
of active buffers used to excite the following ring is
2.Ring n + 2, where Ring n is the ring number.
When the layout of this clock tree is done the distances
from the ring to the input of the exciting drivers from
the same tree level are designed to be exactly the same
for all of them. Thus all of the points in each of the
rings where the ring is excited and/or read, see exactly
the same impedance. The latter property is the main
characteristic of the Conical-Fishbone that yields low
slew rate.

Fig. 9: Inverted cone shape used as inspiration for the
design of a new clock tree architecture. Every conical
section gets excited by the section below it. The clock
root is at the tip of the cone.

A. Clock distribution in the DDR DRAM PHY interface
block

DDR DRAM PHY IP interface is a high speed
mixed-signal design with strict physical layout and
placement constraints. The design of the Conical-
Fishbone tree is no exception! Four clocks are needed in
the DDR DRAM PHY interface block, and two of them
can be generated by the other two. To avoid unnecessary
area use he area use the clock divided versions of
clocks are generated locally from the output of the high
frequency clock tree cell. This allows the reduction by
half of the area used for the clock trees in the DDR
interface block. Figure 11 shows the augmented clock
tree cells used in the DRAM interface block. Along with
the two clocks we can find a clock divider and a buffer.
The clock divider runs a counter that counts from 0 to
2, and the buffer is placed to compensate for the delay
introduced by the clock divider. The reset signal is used
to reset the clock dividers to a default state so that all of

Fig. 10: The Conical-Fishbone clock trees in the nano-
Abacus core chiplet. On the NOC side, the blue cells
are the ones delivering the 300MHz clock, and the red
cells are delivering the global reset signal. On the DDR
DRAM PHY interface block side two clock tree cells
are used for the clock used to send data to the DDR
memory and for the clock used to read the data back.

the clock outputs are in phase. Because the clock divider
counter has a period of 3, from one clock output to the
next one, the reset signal is registered three times. This
will ensure that after a certain number of clock cycles,
all of the clock tree outputs will be completely in phase.

The size of each of the clock tree cells for the DDR
DRAM PHY interface block is approximately 13.44mm
by 50µm. Each of the long sides has 64 clock outputs
for both fast an divided clocks. Figure 12 depicts the
outputs for the fast clock in the DDR interface block
cells. For the distance of 13.44mm, the entire length
of the chiplet-core the maximum (worst case scenario)
skew is 31.8ps.

IV. CONCLUSIONS

The chiplets with the Conical-Fishbone clock tree
network are fabricated in the Global Foundries 55nm
CMOS technology. There is four chiplets in the nano-
Abacus family, each of the chiplets is 17466µm by
14133µm. Because of these large dimensions, it is
impossible to expect the place and route tool to create
clock trees with very low skew and slew. The Conical-
Fishbone clock tree architecture presented in this paper
achieves the design objectives. Long clock tree cells
of ≈ 1500µm by ≈ 50µm were custom designed.
These cells take a clock input and generate several clock
outputs along one or both long sides, with a skew of
only 30ps, allowing clock speeds of up to 1.25GHz.
These cells allow clock trees to be built local to the
outputs of these clock tree cells, making these clock
trees much smaller, hence more energy efficient and
more robust.

���

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 08,2021 at 02:09:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Circuit details of the Conical-Fishbone clock cell.

Fig. 12: Simulated outputs of the fast clock propagated through the clock cell in the DDR DRAM PHY interface.
For all of the clock outputs along both sides of the cell, extending to 13.44mm, the worst case skew is 31.8ps.
This simulation has been done considering all the parasitics of the clock tree layout.

ACKNOWLEDGMENT

This work was supported by DARPA UPSIDE
project HR0011-13-C-0051 through BAE Systems; we
are grateful to Dr. Mike Graziano and Dr. Louise Sen-
gupta who managed the project the first two years while
at BAE systems, for their support and encouragement.

REFERENCES

[1] A. G. Andreou, T. Figliolia, K. Sanni, T. S. Murray, G. Tognetti,
D. R. Mendat, J. L. Molin, M. Villemur, P. O. Pouliquen,
P. M. Julián, R. Etienne-Cummings, and I. Doxas, “Bio-inspired
System Architecture for Energy Efficient, BIGDATA Computing
With Application to Wide Area Motion Imagery ,” in Pro-
ceedings of the 2016 IEEE 7th Latin American Symposium on
Circuits and Systems (LASCAS), 2016, pp. 1–6.

[2] J. Schutz and C. Webb, “A scalable X86 CPU design for 90
nm process,” in 2004 IEEE International Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2004, pp. 62–
513.

[3] J. Warnock, J. Keaty, J. Petrovick, and J. Clabes, “The circuit and
physical design of the POWER4 microprocessor,” IBM Journal
Of Research And Development, vol. 46, no. 2, pp. 27–51, 2002.

[4] R. O. Dror, J. P. Grossman, K. M. Mackenzie, B. Towles,
E. Chow, J. K. Salmon, C. Young, J. A. Bank, B. Batson, M. M.
Deneroff, J. S. Kuskin, R. H. Larson, M. A. Moraes, and D. E.
Shaw, “Exploiting 162-Nanosecond End-to-End Communication
Latency on Anton,” in 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis (SC 2010). IEEE Computer Society, Nov. 2010.

���

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 08,2021 at 02:09:22 UTC from IEEE Xplore. Restrictions apply.

