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Abstract—This paper explores the long short-term memory
(LSTM) recurrent neural network for human action recognition
from micro-Doppler signatures. The recurrent neural network
model is evaluated using the Johns Hopkins MultiModal Action
(JHUMMA) dataset. In testing we use only the active acoustic
micro-Doppler signatures. We compare classification performed
using hidden Markov model (HMM) systems trained on both
micro-Doppler sensor and Kinect data with LSTM classification
trained only on the micro-Doppler signatures. For HMM systems
we evaluate the performance of product of expert based systems
and systems trained on concatenated sensor data. By testing with
leave one user out (LOUO) cross-validation we verify the ability
of these systems to generalize to new users. We find that LSTM
systems trained only on micro-Doppler signatures outperform the
other models evaluated.

I. INTRODUCTION

Human actions occur in three-dimensional space and evolve
over time. Most actions of note involve complicated sequences
of simple motions. Classifying these actions requires systems
capable of learning the time dependencies between these
simpler motions in a high dimensional setting. In this paper,
we investigate LSTM and HMM based action recognition
systems using micro-Doppler signals. These experiments rely
on data from the Johns Hopkins University MultiModal Action
(JHUMMA) dataset [1]. The dataset contains both Microsoft
Kinect and micro-Doppler recordings of a set of 21 actions
performed by different actors. In both the HMM and LSTM
classification systems only the micro-Doppler recordings were
used for classification. However, the HMM system relied
on the Microsoft Kinect sensor data for training while the
LSTM system did not. We find that the LSTM based systems
outperform the HMM based classifiers.

II. DATASET

The shift in frequency observed when either the source
or observer of a sound is moving is known as the Doppler
effect [2]. If the object itself contains moving parts, each
part contributes its own Doppler shift proportional to the
object’s radial velocity component with respect to the receiver.
All of the scattered waves are additive, and the resulting
modulation is a superposition of the individual components
known as the micro-Doppler effect [3]. The acoustic micro-
Doppler effect was independently reported in 2007 by Zhang
et. al. [4]. The micro-Doppler effect results in a reflected
signal that is a combination of frequency, amplitude and
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phase modulation; by applying a short term Fourier transform
(STFT), the changes in frequency are more readily apparent.
Figure 1 shows an example taken from the JHUMMA of a
micro-Doppler spectrogram of an human actor walking and
pivoting.
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Fig. 1. Annotated spectrogram representation of Doppler modulations for

a human walking toward an ultrasound sensor, pivoting, and walking back
away from it.

The JHUMMA dataset [1] used in this study contains
micro-Doppler signatures from three ultrasound sensors orig-
inally discussed in [5] as well as Microsoft Kinect RGB-
D data [6], [7]. From the Kinect data, only the skeletal
data component was used. A schematic of the individual
sensor locations is shown in Figure 2. All actions were
performed within a demarcated bounding box referenced to
a virtual north. This area was located on a large open stage
to minimize uninteresting reflections from nearby objects.
The three ultrasound sensors emitted frequencies at 25kHz,
33kHz, and 40kHz, and were located to the east, west, and
north of the bounding box, respectively. The Kinect sensor
was placed directly on top of the 40kHz sensor. The short
term Fourier transform (STFT) was applied to waveforms
recorded from each sensor. The STFT representation was band
limited to 1.5kHz above and below the carrier frequency,



resulting in 327, 328, and 328 spectrogram frequency bins
respectively. The 21 actions recorded in the JHUMMA dataset
are enumerated in Table II along with their orientations in
the bounding box. These actions were recorded by 13 actors.
However, 30 repetitions are missing resulting in a total of 2700
recorded actions.
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Fig. 2.

Schematic of the sensor locations for the JHUMMA data collection

Action Orientation Repetitions / Duration

Lunges N 10 Per Leg (Alternating)
Lunges NE 10 Per Leg (Alternating)
Lunges NW 10 Per Leg (Alternating)

Left Leg Steps N 10
Right Leg Steps N
Left Arm Raise (Forward) N
Left Arm Raise (Sideways) N 10
Right Arm Raise (Forward) N
N

Right Arm Raise (Sideways) 10
Walk in Place N 20 Steps
Walk Facing Forward N-S 10 cycles
Walk Facing Sideways W-E 10 cycles
Walk and Pivot NE-SW 10 cycles
Walk and Pivot NW-SE 10 cycles
Jumping Jacks N 10
Jump Rope N 10
Body Squats N 10
Jump Forward then Backward N-S 10 sets
Jump Forward then Backward NE-SW 10 sets
Jump Forward then Backward NW-SE 10 sets
Punch Forward N 10 Per Arm (Alternating)
TABLE 1

SCRIPT OF ACTIONS NOMINALLY DEMONSTRATED BY EACH ACTOR.

III. METHODS

We trained four classifiers in total, two HMM based and two
LSTM based. The HMM classifiers were trained using both
spectrogram data from the ultrasound sensors and skeletal data
from the Kinect sensor. The LSTM classifiers were trained
using spectrograms alone. The classifiers were evaluated using
two different cross validation schemes. The first divides the
data set into 5 folds, where two repetitions of each action are

set aside as test data for each user. The second cross validation
scheme uses a leave one user out approach (LOUO) to ensure
that classification generalizes to new users.

A. Hidden Markov Model

In our experiments we use two HMM [8] based mod-
els. In each model, the ultrasound spectrogram recordings
are regarded as visible emissions and the skeletal positions
recorded by the Kinect are regarded as latent states. Both the
spectrograms and the skeletal positions were clustered using
k-means. Thus the emissions and latent states are both discrete.

We regard the product of experts (POE) model detailed
in [9] as a baseline upon which to compare our further
experiments. In this system, an HMM for each action is
trained for each sensor. At test time, the clustered spectrogram
recordings are shown to each model and the log-likelihood
is found. Denoting the sequence of spectrogram clusters as
X, and denoting the log-likelihoods of a given action for the
25kHz, 33kHz, and 40kHz, as £2°(X), £33(X), and £L1°(X)
respectively, the action is classified using a product of experts
decision rule as shown in (1). Following [9], this system uses
200 skeletal clusters and 100 spectral clusters in each HMM
model.

o= argmax (LO(X) + £2(X) + L2(X)). (1)
a

Noting that the POE baseline failed to discriminate between
some diagonally oriented actions in previous experiments,
an HMM system was trained using a concatenation of the
spectrogram data for all sensors. It was hypothesized that this
concatenation would enable the model to learn the coupling
of forward-facing and lateral motion required to discriminate
between diagonal directions. To accommodate the increased
size of the concatenated spectrogram feature vector, 200
spectral k-means clusters were used in the stacked HMM
system.

B. Long Short-Term Memory Model

The LSTM model [10]-[12] is a recurrent neural network
architecture capable of learning complex dependencies across
time. Equations 2-7 detail the procedure to update each node at
a given timestep [13]. In these equations ¢, f;, and o, represent
the value of the input, forget, and output gates respectively.
C represents the update to the hidden state and C} represents
the current hidden state. h, is the output of a given node.
Each node of the LSTM network maintains a hidden state that
is updated at each timestep. In addition, each node contains
an input, output, and forget gate, capable of controlling the
behavior of the node depending on the current value of the
hidden state. This architecture is thus capable of learning
time dependencies in the data that a feedforward neural net
is incapable of learning. A schematic diagram of the LSTM
node architecture is shown in Figure 3. A diagram of an LSTM
network with one hidden layer unrolled over time is shown in
Figure 4.



it = 0 (WiX; + Uihs_q + b;) 2)
fr =0 (WX, + Uphs_1 + by) 3)
0t =0 (WoX; + Uphy_1 +b,) (4)
Cy = tanh (W, X, + Uchy_1b.) (5)

Cy=ip-Co+ fi- Coy (6)
hi = 0 - tanh (Cy) (7)

In our experiments, we used a Keras [14] implementation of
the LSTM running on a Theano backend [15]. In training, the
normalized spectrogram was shown to the LSTM as well as
the action label associated with the recording at each timestep.
The skeletal pose data was not used. The training parameters
used are shown in Table II. We used the Adam optimizer with
a dropout of 0.5. Each of the networks were trained for 200
epochs. A categorical cross entropy loss was used. Two LSTM
networks were evaluated. A one-layer architecture with 1200
hidden nodes and a two-layer architecture with two 800 hidden
node hidden layers were used in our experiments.

Default Training Parameters
Number of epochs 200
Seed 1337
Optimizer Adam
Dropout 0.5
Max Sequence Length 404
Batch Size 100

TABLE 11
TRAINING PARAMETERS FOR LSTM NETWORKS

C. Cross-Validation

Two cross-validation schemes were used in our experiment.
The first cross validation scheme follows the previously re-
ported results in [9] and divides the dataset into 5 folds.
Whenever possible 2 examples of each action performed by
each user were placed into all folds. Each of the folds was
used for testing once, while the remaining 4 were used in
training. Thus examples of each actor performing each action
are present in both test and training sets. Noting the great
degree of similarity in a given actor’s set of performances of
a single action, this potentially allows the classifiers to overfit
to actor specific performances. In order to test the ability of
the classifiers to generalize to new actors, a leave one user out
cross validation scheme was also used. Each actor’s data was
used for testing once, while the remaining data was used for
training. Given the 13 total actors, this resulted in 13 folds.
In both cases results reported have been averaged across all
folds.

Model 5 Fold LOUO

POE Baseline 87.8889 67.963

Stacked HMM | 93.6296 89.0

LSTM 800 98.1852 | 95.6296

LSTM 1200 97.5926 | 95.7037
TABLE III

CLASSIFICATION ACCURACY FOR ALL MODELS

IV. RESULTS

A. Five Fold Cross Validation

Confusion matrices for the classification systems are shown
in Figure 5 and Figure 6. The product of experts baseline
model achieved a classification accuracy of 87.8889%, suf-
fering from confusion in the diagonally oriented walk and
pivot actions. This confusion was resolved in the stacked
data HMM classifier, which achieved a classification accuracy
of 93.6296%. The LSTM classifiers further outperformed the
HMM POE baseline, with the two layer LSTM 800 classifier
achieving an accuracy of 98.1852%.

LSTM 800 5 Fold Percent Correct: 98. 1852
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Fig. 5. Confusion matrix for LSTM with two 800 hidden node layers
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LSTM 1200 5 Fold Percent Correct: 97.5926
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Fig. 6. Confusion matrix for LSTM with one 1200 node hidden layer

Schematic of an LSTM node. Dashed lines indicate a recurrent connection.

Schematic of an LSTM network unrolled over time. Dashed lines indicate a recurrent connection.

B. LOUO Cross Validation

Confusion matrices for the classification systems are shown
in Figure 7 and Figure 8. The LOUO cross validation scheme
resulted in lower overall classification accuracies. The baseline
POE HMM model performed substantially worse, achieving
a classification accuracy of 67.963%. However the stacked
HMM model still performed relatively well achieving an
accuracy of 89.0%. Again the LSTM classifiers outperformed
the HMM classifiers, with the one layer LSTM 1200 model
achieving a slightly higher accuracy of 95.7037%.
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Fig. 7. Confusion matrix for LSTM with two 800 hidden node layers
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Fig. 8. Confusion matrix for LSTM with one 1200 node hidden layer

V. CONCLUSIONS

In this work we have shown the applicability of recurrent
neural networks and specifically the long short-term memory
model for action recognition using micro-Doppler signatures.
The LSTM classifiers used in this work outperform the HMM
based classifiers by substantial margins. Furthermore, the
LSTM classifiers are trained without using the Kinect data
required in the HMM models. In addition, we have found that a
single classifier using a concatenation of data from each sensor
outperforms a product of experts based model. We believe
this gain in performance is due to the coupling of the lateral
and forward-backward motion captured by the concatenated
data. A product of experts model trained on separate sensors is
unable to correctly capture the correlations between orthogonal
dimensions present in diagonal motion.

ACKNOWLEDGMENT

This work was partially supported by the NSF grant IN-
SPIRE SMA 1248056 through the Telluride Workshop on

Neuromorphic Cognition Engineering, by the National Science
Foundation grant I1S-1344772, SCH: INT: Mapping the Car-
diac Acousteome: Biosensing and Computational Modeling
Applied to Smart Diagnosis and Monitoring of Heart Condi-
tions and by an ONR MURI N000141010278. Dan Mendat
was supported by the Johns Hopkins University Applied
Physics Laboratory Graduate Student Fellowship and Jeff
Craley by a Northrop Grumman Graduate Fellowship. We also
thank Jack Riddle of NG for his personal interest and support
for this work.

REFERENCES

[1] T. S. Murray, D. R. Mendat, P. O. Pouliquen, and A. G. Andreou,
“The Johns Hopkins University Multimodal Dataset for Human Action
Recognition,” in Proceedings of SPIE: Radar Sensor Technology XIX;
and Active and Passive Signatures VI, May 2015, pp. 79-94.

[2] C. Doppler, “Uber das farbige Licht der Doppelsterne und einiger
anderer Gestirne des Himmels (English Translation),” Proceedings of
the Royal Bohemian Society of Sciences, vol. 2, pp. 465482, 1842.

[3] V.C. Chen, F. Li, S. S. Ho, and H. Wechsler, “Micro-Doppler effect in
radar: phenomenon, model, and simulation study,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 42, no. 1, pp. 2-21, 2006.

[4] Z. Zhang, P. O. Pouliquen, A. M. Waxman, and A. G. Andreou,
“Acoustic micro-Doppler radar for human gait imaging,” The Journal
of the Acoustical Society of America, vol. 121, no. 3, pp. EL110-3,
Mar. 2007.

[5] J. Georgiou, P. O. Pouliquen, A. S. Cassidy, G. Garreau, C. M. Andreou,
G. Stuarts, C. d’Urbal, S. L. Denham, T. Wennekers, R. Mill, I. Winkler,
T. M. Bohm, O. Szalardy, G. M. Klump, S. Jones, A. Bendixen,
and A. G. Andreou, “A multimodal-corpus data collection system for
cognitive acoustic scene analysis,” in Proceedings of the 45th Annual
Conference on Information Sciences and Systems (CISS), Mar. 2011, pp.
1-6.

[6] G. Yahav, G. Iddan, and D. Mandelboum, ‘“3D imaging camera for
gaming application,” in Consumer Electronics 2007, 2007, pp. 1-2.

[7]1 B. Freedman, A. Spunt, and Y. Ariell, “Distance-varying illumination
and imaging technique for depth mapping,” Patent, Jun., 2014.

[8] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257-286, 1989.

[9] T. S. Murray, D. R. Mendat, K. Sanni, P. O. Pouliquen, and A. G.
Andreou, “Bio-inspired Human Action Recognition With A micro-
Doppler Sonar System -preprint- ,” I[EEE Access, pp. 1-16, 2016.

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

[11] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget:
Continual Prediction with LSTM,” Neural Computation, vol. 12, no. 10,
pp. 2451-2471, Oct. 2000.

[12] F. Gers, “Long Short-Term Memory in Recurrent Neural Networks,”
Ph.D. dissertation, Ph.D. Dissertation Ecole Polytechnique Federale de
Lausanne, 2001.

[13] A. Graves, “Generating Sequences With Recurrent Neural Networks,”
arXiv.org, Aug. 2013.

[14] F. Chollet. (2017, Feb.) Keras: Deep Learning library for Theano and
TensorFlow. [Online]. Available: https://keras.io

[15] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
scientific computing conference (SciPy), 2010.



