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Abstract

Biological photoreceptors transduce and communicate information about visual stimuli to other neurons through
a series of signal transformations among physical states such as concentration of a chemical species, current, or the
number of open ion channels. We present a communication channel model to quantify the transmission and
degradation of visual information in the blowfly photoreceptor cell. The model is a cascade of linear transfer
functions and noise sources that are derived from fundamental principles whenever possible, and whose parameters
are estimated from physiological data. We employ the model to calculate the information capacity of blowfly
phototransduction; our results compare favorably with estimates of the capacity derived from experimental measure-
ments by de Ruyter van Steveninck and Laughlin (Nature 379 (1996) 642–645) and Juusola (J. Gen. Physiol. 104
(1994) 593–621). The model predicts that photon shot noise and ion channel noise are the dominant noise sources
that limits information transmission in the blowfly photoreceptor. © 2001 Elsevier Science Ireland Ltd. All rights
reserved.

Keywords: Information theory; Channel capacity; Biophysical model; Mathematical model; Blowfly; Photoreceptor

www.elsevier.com/locate/biosystems

1. Information capacity and the blowfly
photoreceptor

Information capacity is a fundamental and
quantitative bound on the ability of a physical
system to communicate information (Shannon,
1948). The channel capacity of a system corrupted
by Gaussian noise is given, in bits per s, by:

C=W log2
!

1+
P
N
"

where the channel has noise power N, and the
signal has bandwidth W and average power P.
This capacity is attained using a signal of Gaus-
sian amplitude distribution. For colored noise, the
capacity is (Shannon, 1949):
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where S( f ) and N( f ) are the power spectral
densities of signal and noise, and the optimization
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is over all signals with variance less than or equal
to P.

The signal that maximizes the capacity can be
found using the water-filling analogy; the basic
idea is that signal energy is concentrated at fre-
quencies where noise is low (Cover and Thomas,
1991). The capacity depends only on the
physical properties of the channel, such as band-
width, noise, and constraints on the signal values;
it does not depend on the specific details of any
particular task for which the channel may be
used. Although it is straightforward to define
task-dependent measures of performance, it is ap-
pealing to study the maximum information rate,
or channel capacity, especially for peripheral sen-
sory systems that are used for many different
tasks.

de Ruyter van Steveninck and Laughlin (1996)
determined the channel capacity of blowfly pho-
toreceptors. They considered the photoreceptor
cell as a whole — a ‘black box’ — and performed
input–output measurements. From the experi-
mental transfer functions and output noise, they
calculated the channel capacity. Whereas maxi-
mum information rate provides a practical and
fundamental bound for the photoreceptor’s ability
to communicate information, it provides no in-
sights about the factors that limit information
transmission. To determine these limiting
factors, the ‘black box’ model for the neuron
must be decomposed into its elementary compo-
nents so that the effects of individual noise
sources and inherent bandwidth limitations can be
quantified.

We present a communication channel model to
quantify the transmission of visual information in
the blowfly photoreceptor cell. Our model incor-
porates all physical transformations from photons
entering the compound eye to voltage across the
photoreceptor membrane at the synaptic terminal.
We describe blowfly phototransduction at a suffi-
ciently detailed level to account for noise sources
and bandwidth limitations according to known
biophysics, while maintaining a practical ap-
proach towards estimating parameters of the
model from the available data. Preliminary results
from this work were reported in Abshire and
Andreou (1998, 1999a,b, 2000a,b).

2. A communication channel model of the blowfly
photoreceptor

Blowfly photoreceptors respond to intensity
changes with analog changes in their membrane
potential. In this investigation, we focus on the
photoreceptors R1-6 of Calliphora !icina that pro-
ject to large monopolar cells in the lamina. The
blowfly receives behaviorally relevant information
from light that is reflected or emitted from objects
in the environment. Photons are guided through
the optics of the compound eye to the photorecep-
tors. Absorption of photons activates photosensi-
tive pigments in the photoreceptor cells. The
activated pigments trigger a cascade of biochemi-
cal reactions that produce ‘messenger’ molecules.
These messengers cause light-gated ion channels
in the photoreceptor membrane to open. The
open channels provide a membrane conductance
that allows an ionic current to flow, changing the
membrane voltage. The voltage changes propa-
gate down a short axon to the synaptic terminal
in the lamina. In the discussion that follows, we
investigate the temporal signals transduced
through a single photoreceptor, ignoring spectral,
polarization, and spatial aspects of information
flow in the system.

Information in the photoreceptor is represented
by many different physical structures as the signal
is transformed between different physical degrees
of freedom: photons, conformational states of
proteins, concentrations of chemical messengers,
current, and voltage. The overall function of a
single photoreceptor is to transfer a message
about the world from the light-transducing seg-
ment to the axon terminal that synapses onto the
large monopolar cell. We model the transforma-
tions in the blowfly photoreceptor as a cascade of
communication channels that have bandwidth
limitations. Each of these transformations is asso-
ciated with changes in the signal itself and with
the introduction of noise. This begins even before
transduction, as the arrival times of the photons
are randomly distributed. Other sources of noise
include the thermal activation of rhodopsin, the
stochastic nature of channel transitions, and ther-
mal noise resulting from membrane impedance.
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Fig. 1. A communication channel model of the blowfly photoreceptor, showing the transformations corresponding to optics,
rhodopsin, biochemical cascade, membrane channels, and membrane impedance and the noise sources corresponding to photon shot
noise, rhodopsin thermal noise, stochastic channel noise, and thermal noise due to the membrane impedance.

The model is depicted in Fig. 1, and is mathe-
matically described by Eqs. (2) and (3) below. The
signal power Sn( f ) at any stage n is transformed
through a cascade of linear filters Hi( f ). The
noise power Nn( f ) is the summed power of m
independent, additive noise sources Nj( f ) that are
also transformed by cascades of linear filters.
Explicitly, the signal and noise at stage n are given
by:

Sn( f )= $
n

i=1
%Hi( f )%2Sp( f ) (2)

Nn( f )= &
m

j=1
$
n

i=kj

%Hi( f )%2Nj( f ) (3)

where Sp( f ) is the power spectral density of the
input signal and the noise from independent
source j enters at stage kj.

The input to the system is the light reaching the
photoreceptor as a function of time. The output
of the system is the membrane voltage at the axon
terminal of the photoreceptor. The mean intensity
of the incident light determines an operating
point, and we employ transfer functions Hi( f ),
which are linearized about the operating point.
While the cells under study exhibit nonlinearity at
very low light levels or for large signals (French et
al., 1993; Juusola, 1993), they have been studied
extensively as linear systems (Leutscher-Hazelhoff
and Kuiper, 1964; Eckert and Bishop, 1975;
French and Järvilehto, 1978), and their linear
properties are well documented in the literature
(Juusola et al., 1994, 1995). Modeling the transfer
functions Hi( f ) as linear systems is accurate when

the variance of the signal is sufficiently small so
that the operating point remains fixed. This re-
quirement is satisfied for the stimulation protocols
in the experimental studies of de Ruyter van
Steveninck and Laughlin (1996), Juusola et al.
(1994) and Juusola et al. (1995).

We assume that each of the noise sources Nj( f )
contributes independent, additive noise. The
transfer functions and noise sources are modeled
from first principles when possible and phe-
nomenologically otherwise. Throughout this pa-
per, all spectra are considered to be single-sided,
with frequencies ranging from 0 to "; for real
signals a single-sided spectrum has twice the
magnitude of its corresponding double-
sided power spectrum. With a communication
channel model and its relation to the structure
established, we proceed to describe the individual
stages in the model, both qualitatively and quanti-
tatively.

2.1. Photons: Sp(f ) and Np(f )

Light is a stream of randomly emitted photons.
The number of photons observed in any fixed
time interval will vary about some average value.
This variation can be thought of as ‘noise’ super-
imposed on a signal, which is the average number
of photons. For most light sources, the photon-
counting statistics are described by the Poisson
distribution. We take the photon noise to be the
signal variance induced by photon shot noise. The
power spectral density of the photon noise, in
units of (photons per s)2/Hz, is given by
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Np( f )=2I (4)

where I is the average photon arrival rate, and the
factor of 2 is introduced because the spectrum is
single-sided. We take the input signal to be the
rate of photons reaching the eye as a function of
time. The signal and its power spectral density
Sp( f ) are determined by the environment. Many
of the experimental investigations of blowfly vi-
sion adopt light stimuli that have Gaussian ampli-
tude distributions and flat frequency spectra
(Juusola et al., 1994, 1995; de Ruyter van
Steveninck and Laughlin, 1996) because they are
amenable to estimation of system response
properties.

2.2. Optics: Ho(f )

Many insects, including flies, possess an intra-
cellular pupil mechanism for gain control at high
light intensities. Upon light adaptation, pigment
granules migrate into the light path. These gran-
ules absorb light and attenuate the flux reaching
the photosensitive pigment. In the physiological
literature (Juusola et al., 1994, 1995; de Ruyter
van Steveninck and Laughlin, 1996), the average
intensity I is calibrated at low light intensities,
and, therefore, the effective photon arrival rate
accounts for optical spread, but not for the pupil-
lary attenuation. We model the optical transfer
function as an attenuation constant Co that takes
values between 0 and 1 and depends on the back-
ground intensity I :

Ho
2( f )=Co

2(I) (5)

The optical attenuation was determined experi-
mentally by Howard et al. (1987) as a function of
background intensity, by comparing responses be-
tween normal and white-eyed flies. White-eyed
flies lack the pigments responsible for the intracel-
lular pupil. We fit a sigmoidal function to the data
in Fig. 4 of Howard et al. (1987), and we use this
function to estimate pupillary attenuation for all
light levels:

Co(I)=
exp[p1(I+p2)]+p3

1+exp[p1(I+p2)]+p3

The data and our empirical fit are shown in
Fig. 11, and values for the estimated parameters
p1, p2, and p3 are given in the Appendix A.

We have also estimated the pupillary attenua-
tion from membrane noise data of Juusola et al.
(1994), and this gives somewhat different results;
the parameters, procedures, and results are sum-
marized in the Appendix A.

2.3. Rhodopsin: Hr(f ) and Nr(f )

The photosensitive pigment is rhodopsin, which
consists of the chromophore retinal linked to the
protein opsin. At low light intensities discrete
bumps can be observed in the membrane voltage;
each of these bumps results from current flow that
follows the absorption of a single photon and
resultant isomerization of rhodopsin. Even in the
absence of light, photoreceptors exhibit discrete
electrical responses which are indistinguishable
from single photon absorptions; these dark events
are attributed to the spontaneous thermal isomer-
ization of rhodopsin molecules (Birge and Barlow,
1995). The transformation from photons to acti-
vated rhodopsin molecules is modeled by the
transfer function Hr( f ),in units of (Rh*/photon),
denoting rhodopsin isomerization per photon,
and rhodopsin thermal isomerization is modeled
by the noise source Nr( f ), in units of (Rh*/s)2/
Hz, given by:

H r
2( f )="2 (6)

Nr( f )=2#r (7)

We take the quantum efficiency to be "=1,
and the thermal isomerization rate to be #r=
10−3 s−1. Any quantum efficiency less than unity
is absorbed into the calibration for effective pho-
ton rate that was described in Section 2.2. Esti-
mates for the thermal isomerization rate range
from 10−3 (Birge and Barlow, 1995; Hochstrate
and Hamdorf, 1990) to #3×10−3 s−1 (Lilly-
white, 1977).

As described in Section 2.1, photon shot noise
is modeled by a Poisson point process. Not all
incident photons contribute to the signal; some
are absorbed by the pigment granules, and some
fail to be absorbed by rhodopsin molecules. These
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absorptions and failures cause a random deletion
of events in the photon stream that generates
another Poisson process with a lower arrival rate
(Teich and Saleh, 1982). The effective photon shot
noise, taking into account pupillary absorption
and quantum efficiency, is given by:

Np( f )=2I"Co(I) (8)

We indicate this correction to the photon shot
noise by the dotted lines and transposition of the
photon noise source to an effective activated
rhodopsin noise shown in Fig. 1.

2.4. Biochemical cascade: Hb(f ) and Nb(f )

Each activation of a rhodopsin molecule trig-
gers a cascade of biochemical reactions. This cas-
cade ultimately produces molecules that control
the properties of light-gated channels in the pho-
toreceptor membrane. Changes in the channel
properties translate into changes in the membrane
conductance. Since the details of the biochemical
cascade in invertebrates remain unknown, our
model for the biochemical cascade is phenomeno-
logical. We consider the biochemical cascade to be
a noiseless impulse response to each activated
rhodopsin molecule, a ‘bump’ in the membrane
conductance. This is essentially the adapting
bump model developed by Wong and Knight
(1980), Wong et al. (1980), and Wong et al.
(1982), with the impulse response modeled as a
gamma function. The biochemical cascade filters
the power spectral density of the visual signal by
the transfer function Hb

2( f ), with units of (S/
Rh*)2:

Hb
2 =

hb
2

[1+ (2$ftb)2]nb+1 (9)

We estimate the parameters of the biochemical
cascade transfer function from physiological data;
the parameters and procedures are summarized in
Appendix A.

We do not model any noise sources contributed
in the biochemical cascade (i.e. Nb( f )=0).

2.5. Stochastic channels: Hc(f ) and Nc(f )

The blowfly photoreceptor membrane depolar-

izes in response to light increments, quickly reach-
ing a peak and eventually decaying to a steady
state value. This steady state membrane voltage
increases with light. The light-gated current is
carried primarily by sodium and calcium ions.
Potassium current opposes the voltage change
induced by the light-gated flow.

Membrane channels are proteins which form
pores through the cellular membrane. The
pores can allow ions to flow in and out of the cell
(‘open’ state) or prevent that flow (‘closed’ state).
The probability that the light-gated channels are
open or closed is modulated by the messenger
molecules produced by the biochemical
cascade. This physical mechanism transforms con-
ductance into current across the membrane.
The transfer function from conductance to mem-
brane current is given by Ohm’s law, in units of
(V)2:

H c
2( f )= (Vm−EL)2 (10)

where Vm is the membrane voltage, and EL is the
reversal potential for the ions that flow through
the light-gated channels.

Transitions between the states of a channel
are stochastic. The transition probabilities
can be modulated by the membrane voltage, as
for the potassium channels, or by the presence of
a ligand, as for the light-gated channels. Fluctua-
tions in the number of open channels in-
troduce noise in the membrane current. Channel
kinetics lead to Lorentzian power spectral
densities; for details consult Johnston and Wu
(1997) or DeFelice (1981). The model for
current noise in a simple channel population
with an open and a closed state, time constant
%c, open probability n", single channel conduc-
tance &c and N independent channels, is given
by:

Nc( f )=
4N& c

2(Vm−Ech)2n"(1−n")%c

1+ (2$%c f )2 (11)

We model the noise contributed by potassium
channels and light-gated channels in the blowfly
photoreceptor according to Eq. (11), using
parameters for channel data reported in Weck-
ström et al. (1991), Reuss et al. (1997), Hardie
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and Minke (1993) and Hardie and Minke (1994)
and channel activation parameters estimated from
our model of membrane impedance and summa-
rized in Appendix A. Noise contributed by the
leakage channels is not modeled. More complex
behavior, specifically more than one channel type,
is suggested for the potassium channels by Weck-
ström et al. (1991) and for the light-gated channels
by Reuss et al. (1997), but we utilize the simple
model in Eq. (11) because the data available for
estimating parameters is limited.

The introduction of channel kinetics implies a
dynamical component to the transfer function
Hc( f ) of Eq. (10), specifically a first-order low
pass transfer characteristic with time constant %L

caused by the light-gated channels. Ideally, this
dynamical component should be modeled sepa-
rately, but such a model would require estimation
of the time constant for the light-gated channels as
a function of incident intensity. Our review of the
literature did not reveal this data, so we absorb
the dynamical portion of this transfer characteris-
tic into the biochemical cascade transfer function
that was discussed earlier in Section 2.4.

2.6. Membrane impedance: Hm(f ) and Nm(f )

The current that flows across the membrane in
the light-transducing region changes the local
voltage that propagates to the axon terminal of
the cell. The photoreceptor is an elongated struc-
ture, so we employ cable theory to account for the
propagation of the signal in the cell. Following
van Hateren (1986), we abstract the distributed
properties of the cell into three lumped-parameter
compartments. Two segments represent the cell
body and the third represents the axon, as shown
in Fig. 2(a). Each segment is modeled as a two-
port network, with axoplasm impedance za and
membrane impedance zm (see Fig. 3). The two-
port impedances of the cell body are ZH and ZV,
2lb is the length of the cell body, and Zt is the
terminal impedance of the axon.

ZH=
'zazmcosh('za/zmlb)

sinh('za/zmlb)

ZV=
'zazm

'za/zmsinh('za/zmlb)
(12)

The two-port impedances of the axon are com-
puted analogously using the axon length la The
input impedance is given by Zin=V1/I1, the trans-
fer impedance from input to synaptic terminal is
Ztr=V4/I1, and the output impedance is Zout=
V4/I4.

The compound eye of the blowfly exhibits neu-
ral superposition (Braitenberg, 1967). Six photore-
ceptors receive light from the same direction, but
through different facet lenses, and project to the
same column in the lamina. These cells are cou-
pled to their next neighbors by gap junctions at
their axon terminals (Shaw, 1984). This anatomi-
cal arrangement is modeled by the equivalent
circuit shown in Fig. 2(b) (van Hateren, 1986).
The six photoreceptors are coupled by impedances
Rg representing the gap junctions. The resistance
barrier between extracellular space in the lamina
and extracellular space in the receptor layer is
represented by impedance Rb.

An equivalent circuit model of the membrane
impedance zm in a single compartment is shown in
Fig. 3. The membrane model consists of a capaci-
tance Cm, light-gated conductance gL with reversal
potential EL, leakage conductance gleak with rever-
sal potential Eleak, and potassium conductance gK

with reversal potential EK and dynamical parame-
ters gn and Ln that model the voltage dependence
of the potassium channels. These membrane
parameters contribute axoplasm impedance za and
membrane impedance zm given by:

za=
R

$r2 (13)

zm=
1+2$jfLngn/SA

gn+gm−gnCmLn(2$f )2+2$jf(Cm+Lngngm)
(14)

gm=gL+gleak+gK (15)

where r is the compartment radius, R is the
axoplasmic resistivity and SA is the surface area
of the compartment, per unit length. The surface
area per unit length for the axon is 2!ra, but the
cell body surface area is dominated by the mi-
crovilli that form the lightguide, so the formula is
2!rb+SArhab. Weckström et al. (1992) report evi-
dence suggesting that there may be unique con-
ductance mechanisms in the axon that are absent
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Fig. 2. Cable models for the photoreceptor, after van Hateren (1986). (a) A three compartment model for the photoreceptor, with
two compartments corresponding to the cell body and a single compartment corresponding to the axon. (b) An equivalent circuit
showing a photoreceptor coupled by gap junctions to its six neighbors in the lamina. The impedance Zph represents the input
impedance of a photoreceptor as seen from its axon.

in the cell body, but these conductances have not
been characterized in detail. We use an identical
membrane model for the cell body and axon
compartments.

We estimate the parameters gL(V), gK(V),
gn(V), gleak, Ln,(V), rb, lb, SArhab, and Eleak of the
membrane model from physiological data; please
see Appendix A for brief descriptions of those
parameters and procedures.

The signal is transformed from current in the
light-transducing segment to voltage at the synap-
tic terminal by the transfer impedance Ztr. Both
signal and noise are filtered by the transfer func-
tion Hm

2 ( f ), in units of "2, given by:

Hm
2 ( f )= %Ztr%2 (16)

Thermal equilibrium noise, caused by thermal
agitation of electrical charges, provides a funda-
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Fig. 3. Model for photoreceptor membrane impedance incorporating weakly active potassium channels. The sketch on the right
shows the membrane impedance in the context of a cable segment.

mental lower limit to noise in any system. An
arbitrary impedance Z( f ) contributes thermal
voltage noise with spectral density NV( f )=
4kTRe[Z( f )]. Thus the photoreceptor membrane
impedance contributes thermal noise, in units of
V2/Hz, given by:

Nm( f )=4kTRe[Zout( f )] (17)

3. Results and discussion

We employ the model presented in Section 2 to
calculate the signal, noise, and capacity at each
intermediate stage of the system for various oper-
ating points. In Fig. 4, we compare the noise
predicted by our model with the noise measured
in the membrane voltage. The left panel shows
data from Juusola et al. (1994) that represent the
noise power spectral density of the photoreceptor
membrane voltage, for several background light
levels. The right panel shows the prediction of our
model at the same light levels. We model the noise
at the photoreceptor cell body as the cumulative
noise due to photon noise, rhodopsin noise, chan-

nel noise, and thermal noise1. While there are
obvious quantitative differences between the
model and the data, there are striking qualitative
similarities. For example, as the background light
level increases, the noise level increases at first,
then falls again as the light level continues to
increase in both model and data. Furthermore,
portions of the noise spectra are relatively flat up
to some cutoff frequency, and this cutoff fre-
quency increases with light adaptation for both
model and data. However, our model does not
predict the increase in noise below 5 Hz, which is
evident in the experimental data of Juusola et al.
(1994) and also in the experimental data of Juu-
sola et al. (1995). This excess noise may be con-
tributed by the gain control mechanism of the
intracellular pupil, which is known to have dy-
namics on this time scale (Hardie, 1979). An
alternative explanation for the source of this ex-
cess noise is the biochemical cascade, which also
shows adaptation on this time scale.

1 Ztr and Zout should be replaced by Zin in Eqs. (16) and
(17), respectively, for predictions at the cell body rather than
the axon terminal.
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Fig. 4. Photoreceptor membrane voltage noise. The left panel shows data from Juusola et al. (1994), and the right panel shows noise
predicted by our model, using parameters estimated from the transfer function data of Juusola et al. (1994) and pupillary
attenuation as determined by Howard et al. (1987). The different traces are for different background light levels, color coded so that
purple to blue to green to red corresponds to the light levels [dark, 160, 500, 1600, 5000, 16000, 50000, 160000, 500000] effective
photons per s.

In Fig. 4, the noise predicted by our model at
higher light levels falls below the measured noise.
In Appendix A, we describe an alternative method
for estimating the pupillary attenuation using the
membrane noise data of Juusola et al. (1994). The
left panel of Fig. 5 shows the same data from
Juusola et al. (1994), and the right panel shows
the prediction of our model using the alternative
parameters for pupillary attenuation. The alterna-
tive prediction of Fig. 5 demonstrates quantitative
agreement between modeled and measured noise.
This agreement was achieved by estimating the
pupillary attenuation as a function of incident
intensity. Pupillary attenuation decreases the pho-
ton count in any interval and increases the photon
noise contribution. Thus, the alternative parame-

ters cause the optical transmission to be more
attenuated than the estimates of Howard et al.
(1987) and the photon noise to increase at the
higher light levels for which the predicted noise
was earlier smaller than the measured noise (Fig.
4). We note that the noise data of Juusola et al.
(1995) is quantitatively very different from the
noise data of Juusola et al. (1994). The noise
measured by Juusola et al. (1995) did not agree
quantitatively with the noise predicted by our
model using parameters estimated from the trans-
fer functions of Juusola et al. (1995). An alterna-
tive pupillary attenuation did not improve the
results.

By referring the predicted noise shown in Fig. 4
to the input, using the transfer functions pre-
sented in Section 2, we compute the information
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Fig. 5. Photoreceptor membrane voltage noise. The left panel shows data from Juusola et al. (1994), and the right panel shows noise
predicted by our model, using parameters estimated from the transfer function data of Juusola et al. (1994) and pupillary
attenuation estimated from the noise data of Juusola et al. (1994). The different traces are for different background light levels, color
coded so that purple to blue to green to red corresponds to the light levels [dark, 160, 500, 1600, 5000, 16000, 50000, 160000,
500000] effective photons per s.

capacity of the blowfly photoreceptor using Eq.
(1)2. The capacity is plotted in Fig. 6 as a function
of incident light intensity. Estimates from de
Ruyter van Steveninck and Laughlin (1996) are
shown along with the results of the model pre-
sented in this paper and the photon shot noise
limit. The photon shot noise is computed with
and without pupillary attenuation as determined
by Howard et al. (1987). The results are indistin-

guishable when plotted; only the photon noise
without pupillary attenuation is shown in Fig. 6.
The information capacity predicted by our model
is computed at the cell body and at the axon
terminal. The results of this calculation are indis-
tinguishable when plotted; only the capacity at the
cell body is shown, for comparison with the esti-
mates by de Ruyter van Steveninck and Laughlin
from measurements at the cell body.

We can obtain an independent estimate of the
capacity as a function of background light from
data of Juusola et al. (1994). The data shown on
the left in Figs. 4 and 5 represents membrane
voltage noise from Fig. 5c of Juusola et al. (1994),
and data shown in Fig. 10 of the Appendix A,
scaled from Fig. 7 of Juusola et al. (1994), repre-

2 Note the implicit assumption that all noise sources are
normally distributed, wherease photon shot noise has a Pois-
son distribution. The Poisson distribution approaches the nor-
mal distribution for high mean values, so this assumption does
not hold for very low light levels. The approximation is
reasonable at the lowest light level considered, 160 effective
photon/s.
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sents the transfer function from photons to mem-
brane voltage. In Fig. 7, we show the capacity
computed from the data of Juusola et al. (1994),
along with the prediction of our model for capac-
ity at the cell body using the alternative pupillary
attenuation. For comparison, we also show the
estimates of capacity from de Ruyter van
Steveninck and Laughlin (1996), the prediction of
our model from Fig. 6, and the shot noise limit
before and after pupillary attenuation using alter-
native parameters. The capacity computed using
the pupillary attenuation from Howard et al.
(1987) matches well the estimates of de Ruyter
van Steveninck and Laughlin (1996), and the ca-
pacity computed using the alternative pupillary
attenuation matches the estimates from the data
of Juusola et al. (1994). When the model is ad-
justed to fit the noise data (i.e. using the alterna-
tive parameters for pupillary attenuation), the

capacity predicted by the model corresponds
closely to the capacity computed from the same
data (the circles in Fig. 7).

The channel capacity given by Eq. (1) is an
upper bound on the rate of information transmis-
sion, assuming that the signal is limited only in
average power and the noise is normally dis-
tributed. Although these assumptions are not
strictly true for the photoreceptor, Eq. (1) closely
approximates the actual capacity. Bandwidth limi-
tations alone do not limit information transmis-
sion; a bandwidth limitation which affects signal
and noise equally does not affect the channel
capacity. Capacity can be increased arbitrarily by
increasing the signal power; we must specify how
the signal power is constrained so that Eq. (1) is
meaningful. Experiments in the blowfly usually
specify a fixed contrast power ! c

2, in particular
! c

2=0.1 in Juusola et al. (1994, 1995) and de

Fig. 6. Information capacity computed from our model and estimated from experimental data, as a function of background light
intensity. ‘x’s are experimental estimates by de Ruyter van Steveninck and Laughlin (1996), the solid line is the result from our
model, and the dashed line is the photon shot noise limit before pupillary attenuation.
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Fig. 7. Information capacity computed from our model and estimated from experimental data as a function of background light
intensity. ‘x’s are estimates from de Ruyter van Steveninck and Laughlin (1996), and ‘o’s are estimates computed from the data of
Juusola et al. (1994). The solid and dashed lines are the results from our model, and the dash-dotted and dotted lines are the photon
shot noise limit, before and after pupillary attenuation estimated from the noise data of Juusola et al. (1994), respectively. The upper
result from the model (solid line) uses the pupillary attenuation as determined by Howard et al. (1987), and the lower result (dashed
line) uses the pupillary attenuation as estimated from the noise data of Juusola et al. (1994).

Ruyter van Steveninck and Laughlin (1996). In
this paper, we adopt the convention of fixed con-
trast power ! c

2=0.1, where contrast is defined as
the normalized intensity (! c

2=! I
2/I2), so that our

theoretical results are comparable to published
experimental results.

The detailed model presented in this paper en-
ables us to predict the relative contributions of the
noise sources that ultimately limit the rate of
information transmission. Fig. 8 shows the frac-
tion of total output-referred noise, i.e. voltage
noise power at the photoreceptor axon, which is
contributed by each of the noise sources in the
model, as a function of background intensity. The
dominant noise sources are photon shot noise and
the stochastic channel noise over all background
intensities. At the cell body, thermal noise is

insignificant at all background intensities. At the
axon terminal, thermal noise becomes significant
at higher light intensities, however, its contribu-
tions are concentrated at higher frequencies,
which are unlikely to be relevant physiologically
or behaviorally.

We have analyzed information processing in the
blowfly photoreceptor, by modeling it as a com-
munication system constrained by the physical
components from which it is constructed, from
photons to rhodopsin to biochemistry to mem-
brane currents to membrane voltage. The physical
instantiation of each channel determines the
noise, bandwidth and amplitude constraints for
the signals. Such detailed analysis relates function
to structure in a fundamental and quantitative
manner.
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Fig. 8. Fraction of the total output noise variance at the photoreceptor axon contributed by each independent noise source, as a
function of background light. The photon shot noise and stochastic channel noise are dominant at all background light levels.

The model presented in this paper integrates a
great deal of earlier disparate knowledge about
blowfly phototransduction. Parts of the model
were developed by earlier authors, for example
the adapting bump model of Wong et al. (1980)
and the cable model of van Hateren (1986). In
this work, we integrate knowledge in a way con-
sistent with both the underlying biophysics and an
information theoretic framework. There are many
assumptions and simplifications in our model, and
perhaps inconsistencies in the data, but nonethe-
less our results are encouraging. The remarkable
outcome is not the perfection of any individual fit
to the experimental data, but rather, that when
the system is considered as a whole, with model
parameters estimated from available data, the sys-
tem’s performance is predicted well without intro-
ducing free parameters.

Detailed analysis of a complex system
inevitably requires the estimation of many
parameters. To maintain clarity in our des-
cription of the model, we defer discussion about
parameter estimation to Appendix A. For the
model presented in this paper, we estimated
parameters from data reported in many sources,
tabulated in Table 1 of Appendix A. It is
not reasonable to expect that all of these different
measurements, by different experimenters
using different flies and sometimes different spe-
cies, will represent the properties of any
single cell. This is not a fundamental limitation in
our approach but rather a practical limitation.
We believe that our formulation is very
general, and anticipate that, if the appropriate
data were available, our model would describe it
well.
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Table 1
Descriptions, values, and citations for published data.

Description ReferenceValue(s)

Birge and Barlow (1995)$10−11 events/rhodopsin per sRhodopsin thermal isomerization rate
$108 rhodopsin molecules Hochstrate and Hamdorf, 1990Rhodopsin content for Calliphora

photoreceptor
#1 per 6 minSpontaneous isomerization rate in a locust Lillywhite (1977)

photoreceptor
Parameters for voltage-activated K channels Vr=−60 mV, EK=−85 mV, &K=20 pS, Weckström et al. (1991)

in photoreceptor membrane NK=104, activation threshold for K channels
$−75 mV

Hardie and Minke (1994)Channel open time for light-gated channels %1=1.8 ms
Hardie and Minke (1993)EL=10 mVReversal potential for light-gated channels

&L=17 pS Reuss et al. (1997)Single channel conductance for light-gated
channels

R=1.0 "m, Cm=1 #F/cm2, Ct=2.2 pF,Photoreceptor membrane parameters van Hateren (1986)
Rt=100 M", ra=2 #m, la=35 #m, Rg=25
M", Rb=2 M", Rm=8 K"cm2, rb=2.5 #m,
lb=125 #m, and SArhab=40 #m

Photoreceptor transfer function at different Juusola et al. (1994)Fig. 7
light levels (photon per s%membrane
voltage)

Photoreceptor membrane voltage noise at Fig. 5c Juusola et al. (1994)
different adapting backgrounds

Juusola et al. (1994)Steady state voltage Vm for photoreceptor Fig. 4a
membrane at different adapting
backgrounds

Input impedance of dark-adapted Juusola and Weckström (1993)Fig. 4b
photoreceptor membrane %Zin( f )% at
different fixed voltages

Estimated capacity of photoreceptor and Fig. 3 de Ruyter van Steveninck and
Laughlin (1996)LMC at different adapting backgrounds

Pupillary attenuation for photoreceptor Howard et al. (1987)Fig. 4
Juusola et al. (1995)Photoreceptor transfer function at different Fig. 7A

adapting backgrounds (photon per
s%membrane voltage)

Fig. 11APhotoreceptor membrane voltage noise at Juusola et al. (1995)
different adapting backgrounds

4. Conclusions

In the fifty years since Shannon’s first proba-
bilistic formulation of information theory, its con-
cepts and tools have been employed many times
to better understand neural systems from a func-
tional perspective. Attneave (1954) and Barlow
(1961) introduced the idea that representation in
neural systems is guided by coding principles from
information theory. Since then, information theo-
retic principles have motivated both theoretical
and experimental studies of neural coding. The

early qualitative observations about neural repre-
sentation have been expanded and developed
more rigorously (Atick, 1992; Linsker, 1986;
Laughlin, 1994). Other studies employ abstract
mathematical models to investigate coding strate-
gies for single spiking neurons (MacKay and Mc-
Culloch, 1952; Stein, 1967; Levy and Baxter,
1996). A rich literature has emerged using mea-
surements from neural systems to quantify infor-
mation rate under specific experimental
conditions (Eckhorn and Pöpel, 1974; Theunissen
and Miller, 1991; Rieke et al., 1997; Buračas et
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al., 1998). These quantitative results contribute to
understanding coding strategies, neural computa-
tion, and the reliability of neural signals.

To elucidate the principles of information pro-
cessing in physical systems, we must relate the
functional understanding gained through such in-
formation theoretic studies to the physical proper-
ties of the systems under study. We believe that it
is important to understand neural systems in
terms of fundamental and practical noise limita-
tions at the cellular level, because noise limitations
ultimately set the performance limits that deter-
mine behavior. The physical limits to behavior
were discussed by Bialek (1987), and more re-
cently, Manwani and Koch (1999) have addressed
fundamental noise limitations in neural systems
from a biophysical perspective.

Earlier information theoretic approaches have
left important questions unanswered: ‘how does

information theory relate to biophysics of the real
neuron?’; and more specifically, ‘how do quantita-
tive information theoretic measures relate to the
limitations of the physical structures?’ The work
presented in this paper is a first step towards
providing rigorous answers to these questions.
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Appendix A. Model Parameters, Data Extraction
and Estimation Procedures

Every modeling effort must rely on reliable
experimental data for parameter extraction and
model validation. In an ideal situation, the source
of the data is a single experiment or experimental
preparation that employs a single animal. Unfor-
tunately, this ideal scenario rarely exists. To deter-
mine the parameters of our model, a rather
diverse set of data was employed from different
groups and in some instances even from different
species. In an attempt to reconcile the discrepan-
cies between the model and the data we employed
multiple methods for extracting some of the
model parameters.

In this section, we elaborate the procedures for
estimating the parameters in our model. Table 1
gives descriptions, values, and citations for
parameters and data that are taken directly from
the literature. We extract numerical values for the
data in published figures by scanning and process-
ing using custom MATLAB® functions (Math
Works, Inc., 1997). The positions of individual
data points were obtained using template match-
ing when possible and manually otherwise. Data
representative of drawn lines were selected using
thresholds and manipulated manually. The data
were calibrated using axis marks from the ordi-
nate and abscissa of the figure from which they
were obtained. Numerical optimization was used
to estimate parameters from the calibrated data.
For data represented as a function of frequency f
and voltage V, the optimizations minimized an
objective function which was computed as the
sum of the squared differences between the loga-
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rithms of the data and model, (V(f(log(DATA
( f,V))− log(MODEL( f,V)))2. We performed con-
strained optimization, using the Matlab function
‘constr’, to restrict the parameter space explored
between 10 and 1000% of the starting values.

Membrane Impedance Parameters
We estimate parameters for the photoreceptor

membrane using data representing the input
impedance of the dark-adapted membrane when
clamped at three different voltages, from Fig. 4b
of Juusola and Weckström (1993). This data is
shown in Fig. 9, alongside the curves computed
with the theoretical model using parameters esti-
mated from the sum-square-log optimization pro-
cedure described above. We model the dark
adapted input impedance Zin( f ) using the cable
model of Fig. 2b, in the case of six coupled
photoreceptor cells, with current entering only one
of them (as the voltage clamp was applied to a

single cell). The parallel conductances of Fig. 3
have been lumped into a single term, gm(V)=
gK(V)+gleak+gL(V(I)), where the symbol I de-
notes dependence on the incident light intensity.
We assume that the potassium conductance de-
pends only on the membrane voltage V, the light-
gated conductance depends on V through its
dependence on the light intensity I, and the leak-
age conductance does not depend on V or I. We
take starting values for the membrane resistance
Rm=1/gm and anatomical parameters (lb, rb, and
SArhab) from van Hateren (1986). Values for the
parameters that are not optimized (R, Cm, Ct, Rt,
ra, la, Rg, and Rb) are listed in Table 1.

We obtain values for the voltage-dependent
quantities, gm(V), gn(V), and Ln(V), at each of the
three clamp voltages used in the experiments. We
obtain a single value for each anatomical parame-
ter lb, rb, and SArhab:

Fig. 11. Pupillary attenuation as determined by Howard et al. (1987) (‘x’s) and as determined by fitting noise data of Juusola et al.
(1994) (‘o’s). The solid line is our sigmoidal fit to the data of Howard et al. (1987).
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1
gm(V)

=

!
"
"
"
#

0.886
0.360
0.103

$
"
"
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"m2,

1
gn(V)

=
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"
"
"
#

−1.43
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0.132

$
"
"
"
%
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!
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"
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$
"
"
"
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mHm2,

!
"
"
"
#

lb=114
rb=3.10

SArhab=63.8

$
"
"
"
%

#m

We now make a few assumptions to estimate
the remaining parameters for the photoreceptor
membrane model of Fig. 3. The measurements of
input impedance were performed in the dark-
adapted membrane, and under these conditions,
there is no conductance associated with the light-
gated channels, i.e. gL(V)=0. With a resting po-
tential Vr= −60 mV and the activation threshold
for the potassium channels $ −75 mV (Weck-
ström et al., 1991), there is no conductance associ-
ated with the potassium channels at the lowest
clamped voltage, i.e. gK(Vr−20 mV)=0. Under
these two assumptions, the membrane leakage
conductance gleak is gm(Vr−20 mV). When the
membrane is clamped at the two higher voltages,
Vr and Vr+ l5 mV, the parallel conductance
gm(V) is attributed not only to leakage, which is
assumed to be independent of voltage, but also to
potassium channels, which are voltage-dependent.
Using our estimate for gleak, we can now estimate
gK(V), specifically gK(V)=gm(V)−gleak. The re-
versal potential for the leakage current Eleak is
estimated from the reversal potential EK for the
potassium current (Weckström et al., 1991), the
dark resting potential Vr (Weckström et al., 1991),
and the estimated leakage and potassium conduc-
tances, gleak and gK(Vr).

Determining the potassium conductance at two
voltages is the first step in estimating the potas-
sium conductance and dynamical parameters and

the light-gated conductance over a range of
voltages. From the conductance gK(V) and dy-
namical parameters gn(V) and Ln(V) for the
potassium channels we estimate the channel acti-
vation parameters $, %, and & at the membrane
voltages Vr and Vr+ l5 mV:

$(V)=
n"

%
=

gK(V)
NK'K

gn(V)
Ln(V)

(A.1)

%(V)=
1
%
−'=

!
1−

gK(V)
NK'K

"gn(V)
Ln(V)

(A.2)

((V)=
1

Ln(V)
(V−EK) (A.3)

We interpolate linearly to find activation
parameters for the potassium channels at all other
voltages, and we invert the above system of equa-
tions to estimate the potassium conductance and
dynamical parameters as a function of voltage.
We estimate the light-gated conductance at inter-
mediate voltages from the reversal potentials of
potassium (Weckström et al., 1991) and of the
light-gated conductance (Hardie and Minke,
1993), from data representing the steady state
membrane voltage as a function of incident light
(Fig. 4a of Juusola et al., 1994), and from the
leakage and potassium conductances and leakage
reversal potential estimated above.

In the process of estimating parameters for our
membrane impedance model, we also estimated
most of the parameters for the ion channel noise
model. The only remaining channel parameter is
the total number of light-gated channels. We were
unable to find an estimate for its value in our
review of the literature. Values less than 2×104

result in unphysiological channel parameters (e.g.
n"#0). The requirement for meaningful channel
parameters provides only a lower bound for NL.
This uncertainty was exploited by allowing NL to
be a free parameter in fitting the noise data de-
scribed below. When the noise data was not fit
explicitly we assume that NL=106. We take the
latter value to be a reasonable guess, as there are
105 microvilli and 108 rhodopsin molecules in
those microvilli. One of the putative light-gated
channels is localized along the base of the mi-
crovilli (Pollock et al., 1995), so the number of
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light-gated channels should be between 105 and
108. The latter assumption does not have a strong
effect on the predicted membrane noise, although
the predicted noise decreases slightly with increas-
ing NL.

Biochemical Cascade Parameters
We estimate parameters for the biochemical

cascade, hb(I), tb(I), and nb(I), using data from
Fig. 7 of Juusola et al. (1994), which represents
the measured transfer function from effective pho-
ton rate to membrane voltage at eight back-
ground light levels. This data was scaled by the
transfer functions corresponding to the optical
attenuation (Ho( f ), Eq. (5)), the channels (Hc( f ),
Eq. (10)), and the membrane impedance
(Hm( f )= %Zin( f )%). The scaled data reflects the
biochemical cascade portion of the transfer func-
tion. Fig. 10 shows the model (solid lines) and
scaled physiological data (symbols) at the eight
light levels. Parameters for the optical transfer
function Ho are determined either from a fit to the
data of Howard et al. (1987) or from a fit of
predicted noise with measured noise as described
below. Parameters for the channel transfer func-
tion Hc are the steady state membrane voltage at
the eight background light levels, given by Fig. 4a
of Juusola et al. (1994) and the reversal potential
for the light-gated conductance EL (Hardie and
Minke, 1993). Parameters for the membrane
impedance transfer function Hm( f ) were esti-
mated as discussed above. We employ the input
impedance rather than the transfer impedance
because the voltage data was measured at the cell
body. We model the input impedance Zin( f ) us-
ing the cable model of Fig. 2b, in the case of six
coupled photoreceptor cells, with current entering
all six of them (as the input light was applied to
all six cells).

The model for the frequency response of a
gamma function (Eq. (9)) was matched to the
data using numerical optimization as described
earlier, with further constraints imposed to re-
strict each biochemical cascade parameter (hb(I),
tb(I), and nb(I)) to vary monotonically with the
intensity and to restrict the implied channel
parameters to be plausible (i.e. 0#n"#1). The
data at higher frequencies from Fig. 7 of Juusola
et al. (1994) was ignored because it appeared to be

unreliable above cutoff frequencies ranging from
130 to 350 Hz. The parameters for the membrane
impedance are used to fit the biochemical cascade,
so the impedance and biochemical cascade
parameters were subsequently optimized together,
using constrained optimization to restrict the
parameter space explored between 50 and 200%
of the earlier optimized values. This joint opti-
mization did not change the membrane
impedance parameters significantly.

Eight values are obtained and listed below for
each of the parameters, hb(I), tb(I), and nb(I), at
the background light levels I= [160, 500, 1600,
5000, 16000, 50000, 160000, 500000] effective
photons per s:

hb(I)=

!
"
"
"
"
"
"
"
"
"
"
"
#

8.0975

8.2449

5.7855

3.2701
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$
"
"
"
"
"
"
"
"
"
"
"
%

pS/Rh,
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!
"
"
"
"
"
"
"
"
"
"
"
#

8.9024
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$
"
"
"
"
"
"
"
"
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!
"
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4.9743

5.7908

6.7294

$
"
"
"
"
"
"
"
"
"
"
"
%

A second set of parameters for the biochemical
cascade model was obtained using data from Fig.
7a of Juusola et al. (1995). The results were
similar to those listed above. The biochemical
cascade parameters at intermediate light levels
were determined by interpolating the logarithms
of the parameters linearly with the logarithm of
the light level I.

Optical Attenuation Parameters
We estimate optical attenuation from an empir-
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ical fit to the data of Howard et al. (1987), as
discussed in Section 2.2, and obtain parameters
p1= −1.90, p2= −6.12, and p3=6.15×10−3.
The values used for the pupillary attenuation
strongly affect the noise predicted by our model.
While Fig. 4 shows some qualitative agreement
between measured and predicted membrane
voltage noise, this agreement can be improved
quantitatively by estimating parameters using the
membrane noise data from Fig. 5c of Juusola et
al. (1994). We estimate the pupillary attenuation
Co(I) and the number of light-gated channels NL

using numerical optimization as described above,
with further constraints imposed to restrict the
attenuation to vary monotonically with the inten-
sity, to take values between 0 and 1, and to
restrict the implied channel parameters to be plau-
sible (i.e. 0#n"#1). The data at frequencies
below 4.5 Hz was ignored, since none of the noise
sources in our model can account for the excess
low frequency noise. We obtain the number of
light-gated channels NL=3.4×104, and eight
values for the pupillary attenuation, Co(I), as a
function of light level I :

Co(I)=

[1.0 1.0 1.0 1.0 0.687 0.497 0.296 0.197 0.126]
(A.4)

The pupillary attenuation estimated by our nu-
merical optimization is shown as circles in Fig. 11
and is much stronger than that determined by
Howard et al. (1987) for the corresponding light
levels.

Using our values for the pupillary attenuation
(Eq. (A.4)), the membrane voltage noise predicted
by our model shows quantitative agreement with
the measured noise, in contrast with the predicted
membrane voltage noise shown in Fig. 4 that
employs our empirical fit to the pupillary attenua-
tion data from Howard et al. (1987). The left
panel of Fig. 5 shows measured noise data from
Juusola et al. (1994), and the right panel shows
the results of our model, using the parameters for
membrane impedance, biochemical cascade, and
our values for the estimated pupillary attenuation
(given in Eq. (A.4)).
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